Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In fractured reservoirs, fractures serve as both water channeling and oil flow channels. Because of the impact of bottom water coning, the water channeling phenomenon becomes more problematic in the middle and late stages of reservoir development. Furthermore, residual oil is limited to small-scale fractures. In multi-scale fractures, the conventional pressure-bearing pattern of plugging agents is ambiguous. This results in low oil recovery, low sweep efficiency from water flooding, and low plugging agent application efficiency. Until now, the pressure-bearing patterns related to gel strength in multi-scale fractures have not been clear. In this paper, the gelation performances of temperature-resistant gel (TRG) samples with different elastic moduli were investigated. The elastic modulus of the TRG was normalized by the elastic modulus (G') and viscosity modulus (G″). Subsequently, we carried out research on the bottom water pressure patterns of TRGs. This study revealed the pressure-bearing patterns of the TRGs under multi-scale fractures. A corresponding influence pattern chart was established, and the optimal surface function was fitted using the MATLAB nonlinear surface data fitting method. Finally, an application experiment for the characteristic chart was carried out. The plugging rate was evaluated based on the permeability reduction and pressure differential across the core samples before and after gel injection. Subsequently, a TRG with certain elastic moduli before and after plugging the core fracture node was selected from the chart. The elastic modulus of the TRG at the injection node prior to plugging was 14.29 Pa. The elastic modulus of the TRG at the injection node after plugging was 19.42 Pa. The experimental results showed that the TRG with an elastic modulus of 19.42 Pa effectively plugged the fractures and remained stable for over 90 days under a pressure differential of 53 KPa, resulting in a 58.7% improvement in oil recovery compared with water flooding. However, it was difficult for the TRG with an elastic modulus of 14.29 Pa to plug fractures efficiently, and it only enhanced the oil recovery by 15.2%. The primary aim of this work was to establish a quantitative and normalized evaluation method for temperature-resistant gels (TRGs) used in fractured reservoirs. By introducing a classification system based on the elastic modulus (G') and correlating it with the fracture scale and plugging performance, this study bridges the gap between laboratory gel evaluations and field applications. The results provide practical design criteria and contribute to improving the efficiency and adaptability of gel plugging strategies under harsh reservoir conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027462PMC
http://dx.doi.org/10.3390/gels11040305DOI Listing

Publication Analysis

Top Keywords

elastic modulus
28
multi-scale fractures
16
pressure-bearing patterns
12
oil recovery
12
modulus trg
12
trg elastic
12
plugging
9
elastic
9
patterns gel
8
gel plugging
8

Similar Publications

Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.

View Article and Find Full Text PDF

Effect of pH and Particle Charge on the Interfacial Properties of Biocatalytic Pickering Emulsions─Where Are the Enzymes Located?

Langmuir

September 2025

Process Engineering in Life Science Engineering, HTW Berlin, Wilhelminenhofstraße 75 A, 12459 Berlin, Germany.

Pickering emulsions (PEs), where water-in-oil (w/o) droplets are stabilized by nanoparticles (NPs), offer a promising platform for biocatalysis by providing a large interfacial area crucial for efficient substrate conversion. While several lipase catalyzed reactions in PEs have been demonstrated, the exact interfacial structure is unknown. This study focuses on the interfacial network formed by NPs and lipase (CRL) at the octanol/water-interface by varying pH and NP charge.

View Article and Find Full Text PDF

[Stiffness of scleral fibroblasts and extracellular matrix remodeling in models of cellular senescence].

Zhonghua Yan Ke Za Zhi

September 2025

Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.

To explore the effects of aging on the stiffness of human scleral fibroblast (HSF) and the remodeling of the extracellular matrix. This experimental study was conducted from January 2022 to June 2024. HSFs were cultured, and after cell passage, β-galactosidase staining was conducted.

View Article and Find Full Text PDF

Water resistance and hydration mechanism of phosphogypsum cemented paste backfill under composite curing agent modification.

Environ Res

September 2025

School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Safe and Green Mining of Metal Mines with Cemented Paste Backfill, National Mine Safety Administration, University of Science and Technology Beijing, Beijing 100083, Chi

Cemented paste backfill has made outstanding contributions to the large-scale consumption of phosphogypsum (PG), but poor water resistance significantly weakens the mechanical strength, promotes the leaching of total soluble phosphate (TP) and fluoride ions (F), and reduces its attractiveness in mine engineering. This research synthesized a curing agent (CA) using sodium methylsilicate, sodium silicate, and polyaluminum chloride (PAC). PG produced from Deyang Haohua Qingping Phosphate Mine Co.

View Article and Find Full Text PDF

Strain-induced instabilities of graphene under biaxial stress.

J Chem Phys

September 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.

The mechanical properties of graphene are investigated using classical molecular dynamics simulations as a function of temperature T and external stress τ. The elastic response is characterized by calculating elastic constants via three complementary methods: (i) numerical derivatives of stress-strain curves, (ii) analysis of cell fluctuation correlations, and (iii) phonon dispersion analysis. Simulations were performed with two interatomic models: an empirical potential and a tight-binding electronic Hamiltonian.

View Article and Find Full Text PDF