A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

M2 microglia-derived small extracellular vesicles modulate NSC fate after ischemic stroke via miR-25-3p/miR-93-5p-TGFBR/PTEN/FOXO3 axis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Endogenous neurogenesis could promote stroke recovery. Furthermore, anti-inflammatory phenotypical microglia (M2-microglia) could facilitate Neural Stem Cell (NSC)-mediated neurogenesis following Ischemic Stroke (IS). Nonetheless, the mechanisms through which M2 microglia influence NSC-mediated neurogenesis post-IS remain unclear. On the other hand, M2 microglia-derived small Extracellular Vesicles (M2-sEVs) could exert phenomenal biological effects and play significant roles in cell-to-cell interactions, highlighting their potential involvement in NSC-mediated neurogenesis post-IS, forming the basis of this study.

Methods: M2-sEVs were first isolated from IL-4-stimulated microglia. For in vivo tests, M2-sEVs were intravenously injected into mice every day for 14 days after transient Middle Cerebral Artery Occlusion (tMCAO). Following that, the infarct volume and neurological function, as well as NSC proliferation in the Subventricular Zone and dentate gyrus, migration, and differentiation in the infarct area, were examined. For in vitro tests, M2-sEVs were administered to NSC subjected to Oxygen-Glucose Deprivation (OGD) and then reoxygenation, after which NSC proliferation and differentiation were assessed. Finally, M2-sEVs were subjected to microRNA sequencing to explore the regulatory mechanisms.

Results: Our findings revealed that M2-sEVs reduced the infarct volume and increased the neurological score in mice post-tMCAO. Furthermore, M2-sEV treatment promoted NSC proliferation and neuronal differentiation both in vivo and in vitro. Additionally, microRNA sequencing revealed miR-93-5p and miR-25-3p enrichment in M2-sEVs. Inhibitors of these miRNAs prevented TGFBR, PTEN, and FOXO3 downregulation in NSC, reversing M2-sEVs' beneficial effects on neurogenesis and sensorimotor recovery.

Conclusions: M2-sEVs increased NSC proliferation and neuronal differentiation, and protected against IS, at least partially, via delivering miR-25-3p and miR-93-5p to downregulate TGFBR, PTEN, and FOXO3 expression in NSC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020034PMC
http://dx.doi.org/10.1186/s12951-025-03390-2DOI Listing

Publication Analysis

Top Keywords

nsc proliferation
16
nsc-mediated neurogenesis
12
microglia-derived small
8
small extracellular
8
extracellular vesicles
8
nsc
8
ischemic stroke
8
neurogenesis post-is
8
m2-sevs
8
tests m2-sevs
8

Similar Publications