Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acute myeloid leukemia (AML) is an aggressive hematological malignancy. Patients with wild-type FLT3 relapsed or refractory (R/R) AML face significant therapeutic challenges due to the persistent lack of effective treatments. A comprehensive understanding of the mechanisms underlying chemotherapy resistance is needed to the development of effective treatment strategies. Therefore, we investigated the molecular mechanisms underlying cytarabine (Ara-C) resistance and daunorubicin (DNR) tolerance in Ara-C-resistant RHI-1 cells derived from the wild-type FLT3 AML cell line SHI-1. Quantitative analysis of intracellular drug concentrations, proteomics, and phosphoproteomics showed that DNR resistance in Ara-C-resistant RHI-1 cells is driven by metabolic remodeling toward mitochondrial metabolism, upregulation of DNA repair pathways, and enhanced reactive oxygen species (ROS) detoxification rather than reduced drug uptake. Moreover, targeting these compensatory mechanisms, particularly the OXPHOS complex I proteins, significantly improved the efficacy of both Ara-C and DNR. Conclusively, these findings highlight mitochondrial metabolism and DNA repair as critical factors in chemotherapy resistance and offer valuable insights into potential therapeutic targets for enhancing treatment outcomes in patients with wild-type FLT3 R/R AML.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12019594PMC
http://dx.doi.org/10.1038/s41419-025-07653-6DOI Listing

Publication Analysis

Top Keywords

mitochondrial metabolism
12
wild-type flt3
12
acute myeloid
8
myeloid leukemia
8
patients wild-type
8
r/r aml
8
mechanisms underlying
8
chemotherapy resistance
8
ara-c-resistant rhi-1
8
rhi-1 cells
8

Similar Publications

Mitochondria continually undergo fission to maintain their network and health. Nascent fission sites are marked by the ER, which facilitates actin polymerization to drive calcium flux into the mitochondrion and constrict the inner mitochondrial membrane. Septins are a major eukaryotic cytoskeleton component that forms filaments that can both directly and indirectly modulate other cytoskeleton components, including actin.

View Article and Find Full Text PDF

is a human fungal pathogen that survives and proliferates within phagocytic immune cells. To sustain growth in the nutrient-limited phagosome environment, the pathogenic yeast scavenges available carbon sources, which must be metabolized through central carbon metabolism for respiration and biomass synthesis. However, carbon metabolic pathways operating in the pathogenic yeast phase have not been extensively mapped.

View Article and Find Full Text PDF

Fatty acid-binding protein 4 (FABP4) is a cytosolic lipid chaperone predominantly expressed in adipocytes. It has been shown that targets adipose tissues and resides in adipocytes. However, how manipulates adipocytes to redirect nutrients for its benefit remains unknown.

View Article and Find Full Text PDF

The stems of , an important vegetable in China, are targeted by the pathogen , triggering a response through the mitogen-activated protein kinase (MAPK) signalling pathway. To investigate the characteristics and the role of MAPK gene family in the biological stress response, a bioinformatics-based analysis was performed, and the expression patterns of and MAPK-infection pathway-related genes were detected in male plants inoculated with . Twenty-five were identified and divided into four subgroups A, B, C and D: carried a conserved TEY motif, while D had a conserved TDY motif.

View Article and Find Full Text PDF

Insights into the toxicity effects of indoxacarb against Spodoptera frugiperda using metabolomics combined with mass spectrometry imaging.

Pest Manag Sci

September 2025

National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, China.

Background: As one of the most destructive and invasive pests for various plants in China, Spodoptera frugiperda (Lepidoptera: Noctuidae) poses an enormous threat to food security and results in serious economic losses for harvesting and consumption of agricultural vegetables. To this end, indoxacarb has shown great promise as an effective insecticide against Spodoptera frugiperda. It is metabolized by insect esterases or amidases into the N-decarbomethoxy metabolite (DCJW), which is a key metabolite responsible for the insecticidal activity of indoxacarb.

View Article and Find Full Text PDF