Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pompe disease (PD) is a progressive myopathy caused by the aberrant accumulation of glycogen in skeletal and cardiac muscle resulting from the deficiency of the enzyme acid alpha-glucosidase (GAA). Administration of recombinant human GAA as enzyme replacement therapy (ERT) works well in alleviating the cardiac manifestations of PD but loses sustained benefit in ameliorating the skeletal muscle pathology. The limited efficacy of ERT in skeletal muscle is partially attributable to its inability to curb the accumulation of new glycogen produced by the muscle enzyme glycogen synthase 1 (GYS1). Substrate reduction therapies aimed at knocking down GYS1 expression represent a promising avenue to improve Pompe myopathy. However, finding specific inhibitors for GYS1 is challenging given the presence of the highly homologous GYS2 in the liver. Antisense oligonucleotides (ASOs) are chemically modified oligomers that hybridise to their complementary target RNA to induce their degradation with exquisite specificity. In the present study, we show that ASO-mediated Gys1 knockdown in the Gaa mouse model of PD led to a robust reduction in glycogen accumulation in skeletal muscle. In addition, combining Gys1 ASO with ERT slightly further reduced glycogen content in muscle, eliminated autophagic buildup and lysosomal dysfunction, and improved motor function in Gaa mice. Our results provide a strong foundation for validation of the use of Gys1 ASO, alone or in combination with ERT, as a therapy for PD. We propose that early administration of Gys1 ASO in combination with ERT may be the key to preventative treatment options in PD. KEY POINTS: Antisense oligonucleotide (ASO) treatment in a mouse model of Pompe disease achieves robust knockdown of glycogen synthase (GYS1). ASO treatment reduces glycogen content in skeletal muscle. Combination of ASO and enzyme replacement therapy (ERT) further improves motor performance compared to ASO alone in a mouse model of Pompe disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12017901PMC
http://dx.doi.org/10.1002/ctm2.70314DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
mouse model
16
pompe disease
16
gys1 aso
16
glycogen synthase
12
model pompe
12
antisense oligonucleotides
8
glycogen
8
accumulation glycogen
8
enzyme replacement
8

Similar Publications

Background: Metabolic syndrome (MetS) and sarcopenia are major global public health problems, and their coexistence significantly increases the risk of death. In recent years, this trend has become increasingly prominent in younger populations, posing a major public health challenge. Numerous studies have regarded reduced muscle mass as a reliable indicator for identifying pre-sarcopenia.

View Article and Find Full Text PDF

Vasoconstrictor responsiveness in resting and contracting skeletal muscle following an acute bout of exercise: Impact of aging.

J Appl Physiol (1985)

September 2025

Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa.

Long-term exercise training can attenuate sympathetic vasoconstriction in both resting and contracting skeletal muscle; however, the impact of an acute bout of exercise on vasoconstrictor responsiveness and the influence of aging is unknown. Therefore, we tested the hypothesis that an acute bout of exercise will blunt sympathetic-mediated vasoconstriction in resting and contracting skeletal muscle of young and older adults. Twenty-one adults (10 Young: 23±5 yr and 11 Older: 65±8 yr) performed a rest and a rhythmic handgrip exercise trial before and after either 30 minutes of cycling exercise (60-65% HRmax) or a time control period (seated rest).

View Article and Find Full Text PDF

Soft tissue sarcomas are a heterogeneous group of malignancies arising from mesenchymal cells. Recent advancements in genomic profiling have identified novel gene fusions in these tumors, offering new insights into their pathogenesis and potential therapeutic targets. Here, we describe a spindle cell sarcoma harboring a novel gene fusion.

View Article and Find Full Text PDF

In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peripheral nervous system (PNS), and the coupling of PNS with muscular contractions; (ii) modeling the arm sensory system, including chemosensing and proprioception; and (iii) algorithms for sensorimotor control, which include a novel feedback neural motor control law for mimicking target-oriented arm reaching motions, and a novel consensus algorithm for solving sensing problems such as locating a food source from local chemical sensory information (exogenous) and arm deformation information (endogenous).

View Article and Find Full Text PDF

Objectives: The escalating global incidence of obesity, cardiometabolic disease and sarcopenia necessitates reliable body composition measurement tools. MRI-based assessment is the gold standard, with utility in both clinical and drug trial settings. This study aims to validate a new automated volumetric MRI method by comparing with manual ground truth, prior volumetric measurements, and against a new method for semi-automated single-slice area measurements.

View Article and Find Full Text PDF