Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Prolonged fasting (PF), defined as abstaining from energy intake for ≥4 consecutive days, has gained interest as a potential health intervention. However, the biological effects of PF on the plasma proteome are not well understood.

Methods: In this study, we investigated the effects of a medically supervised water-only fast (mean duration: 9.8 ± 3.1 days), followed by 5.3 ± 2.4 days of guided refeeding, in 20 middle-aged volunteers (mean age: 52.2 ± 11.8 years; BMI: 28.8 ± 6.4 kg/m).

Results: Fasting resulted in a 7.7% mean weight loss and significant increases in serum beta-hydroxybutyrate (BHB), confirming adherence. Untargeted high-dimensional plasma proteomics (SOMAScan, 1,317 proteins) revealed multiple adaptations to PF, including preservation of skeletal muscle and bone, enhanced lysosomal biogenesis, increased lipid metabolism via PPARα signaling, and reduced amyloid fiber formation. Notably, PF significantly reduced circulating amyloid beta proteins Aβ40 and Aβ42, key components of brain amyloid plaques. In addition, PF induced an acute inflammatory response, characterized by elevated plasma C-reactive protein (CRP), hepcidin, midkine, and interleukin 8 (IL-8), among others. A retrospective cohort analysis of 1,422 individuals undergoing modified fasting confirmed increased CRP levels (from 2.8 ± 0.1 to 4.3 ± 0.2 mg/L). The acute phase response, associated with transforming growth factor (TGF)-β signaling, was accompanied by increased platelet degranulation and upregulation of the complement and coagulation cascade, validated by ELISAs in blood and urine.

Conclusions: While the acute inflammatory response during PF may serve as a transient adaptive mechanism, it raises concerns regarding potential cardiometabolic effects that could persist after refeeding. Further investigation is warranted to elucidate the long-term molecular and clinical implications of PF across diverse populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12088818PMC
http://dx.doi.org/10.1016/j.molmet.2025.102152DOI Listing

Publication Analysis

Top Keywords

prolonged fasting
8
medically supervised
8
supervised water-only
8
acute inflammatory
8
inflammatory response
8
fasting promotes
4
promotes systemic
4
systemic inflammation
4
inflammation platelet
4
platelet activation
4

Similar Publications

Biorelevant simulation of GI variability and its impact on the release behavior of non-disintegrating formulations: A case study using DHSI-IV (NERDT) system as a novel in vitro tool.

Int J Pharm

September 2025

Life Quality (LQ) Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China. Electronic address:

Gastrointestinal (GI) physiological variability significantly influences dissolution and bioavailability of non-disintegrating solid drug systems. This study employed the dynamic human stomach-intestine (DHSI-IV, branded as NERDT) system to characterize how gastric emptying kinetics and intestinal environmental dynamics affect drug release, using extended-release metformin matrix tablets (Glucophage XR®) and metformin osmotic pump tablets (Nida®) as model formulations. The DHSI-IV (NERDT) system accurately simulated three fasting-state gastric emptying profiles (30-120 min complete emptying) with excellent fit to the modified Elashoff model (R = 0.

View Article and Find Full Text PDF

Glucagon dysregulation is a hallmark of type 2 diabetes mellitus (T2DM), yet its early hepatic effects remain unclear. Here, we demonstrate that glucagon-induced gluconeogenesis is markedly enhanced in primary hepatocytes from prediabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a well-established model of human T2DM. Compared to control LETO rats, OLETF hepatocytes showed significantly higher glucagon-stimulated expression of gluconeogenic genes (Pepck, G6pase, Fbp1) at both mRNA and protein levels, along with elevated glucose production.

View Article and Find Full Text PDF

Sodium-glucose Cotransporter 2 (SGLT-2) inhibitors are oral antidiabetic drugs that were developed for the treatment of patients with diabetes mellitus and are now also approved for treating chronic heart failure and chronic kidney disease. By inhibiting SGLT‑2 in the proximal renal tubule, urinary excretion of glucose is increased. Large randomized trials have demonstrated improved glycemic control, reduced cardiovascular events and lower mortality but also an increased risk of urogenital infections and dehydration.

View Article and Find Full Text PDF

Background Fasting during the month of Ramadan is practiced by over a billion Muslims worldwide. This religious observance, which involves complete abstention from food and fluids during daylight hours, may contribute to dehydration and increase the risk of venous thromboembolism (VTE), particularly in hot climates. Despite this theoretical concern, limited clinical evidence exists on the actual incidence and risk of VTE associated with prolonged fasting.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease involving multiple organs. It affects the quality of life of patients significantly. Traditional treatments have certain limitations, such as side effects caused by long-term intake, complications owing to prolonged pathogenesis, and limited therapeutic effects.

View Article and Find Full Text PDF