98%
921
2 minutes
20
Introduction: Epilepsy is the fourth most common neurological disorder, affecting nearly 1% of the global population. Despite recent advancements in medical therapies, approximately one-third of patients remain refractory to treatment, necessitating consideration of surgical intervention. Historically, epilepsy surgery has been invasive and maximalist in nature, involving extensive brain resections with significant risk for morbidity. However, emerging approaches offer promising, less-invasive alternatives. One such technique is focused ultrasound (FUS), a rapidly evolving, incisionless, image-guided therapy that allows physicians to precisely target specific brain regions with ultrasonic energy to achieve a range of therapeutic effects.
Methods: Systematic methods were implemented to define the scope of preclinical and clinical applications of FUS to treat epilepsy. Inclusion criteria included preclinical experiment, case study, case series, cohort studies, and clinical trials involving therapeutic application of FUS for treatment of epilepsy of any etiology. The primary exclusion criterion was FUS for indications other than treatment of epilepsy.
Results: Forty-six published articles and 9 ongoing clinical trials were included for a total of 55 studies. For ablative therapies, 10 studies were identified, of which 2 were preclinical studies, 1 was a clinical proof-of-concept study, 3 were clinical case reports, 1 was a completed clinical pilot study, and 3 were ongoing Phase I-Phase II clinical trials. For neuromodulatory FUS, 30 studies were identified, of which 19 were preclinical studies, 1 was a clinical case report, 4 were clinical pilot studies, and 6 were ongoing Phase I-Phase II clinical trials. Lastly, with respect to FUS-mediated blood-brain barrier (BBB) opening studies, 15 were identified, all of which were preclinical studies.
Discussion: Currently, FUS has been clinically applied for targeted brain ablation (high intensity [HIFU]) and neuromodulation (low intensity [LIFU]), with recent basic science applications of sonogenetics and targeted drug delivery through the BBB (Precise Intracerebral Noninvasive Guided, or PING, Surgery) offering new opportunities for clinical translation. This review summarizes preclinical and clinical applications of FUS for epilepsy treatment, addresses challenges to implementation, and explores key areas for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000545716 | DOI Listing |
Infect Dis Ther
September 2025
School of Biomedical Sciences, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China.
Introduction: The high mortality of Coronavirus Disease 2019 (COVID-19) highlights the need for safe and effective antiviral treatment. Small molecular antivirals (remdesivir, molnupiravir, nirmatrelvir/ritonavir) and immunomodulators (baricitinib, tocilizumab) have been developed or repurposed to suppress viral replication and ameliorate cytokine storms, respectively. Despite U.
View Article and Find Full Text PDFJ Neurooncol
September 2025
Institute of Medical Biostatistics, Epidemiology, and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany.
Purpose: Patients diagnosed with high-grade gliomas (HGG) often experience substantial psychosocial dis-tress. However, due to neurological and neurocognitive deficits its assessment remains challenging, and needs remain unmet. We compared a novel face-to-face assessment during doctor-patient conversations with questionnaire-based screening.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2025
Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Whole blood (WB) transcriptomics offers a minimal-invasive method to assess patients' immune system. This study aimed to identify transcriptional patterns in WB associated with clinical outcomes in patients treated with immune checkpoint inhibitors (ICIs). We performed RNA-sequencing on pre-treatment WB samples from 145 patients with advanced cancer.
View Article and Find Full Text PDFNat Genet
September 2025
Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.
View Article and Find Full Text PDFNat Rev Neurol
September 2025
Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
Health disparities are preventable differences in health between different populations, and they are endemic throughout medicine owing to social, economic and environmental disadvantages. Neurology is no exception, and health disparities for systematically marginalized groups are present in the prevention, diagnosis, treatment and outcomes of all neurological disorders. The aetiology of these disparities is complex and multifactorial, reflecting the interplay of structural, institutional and individual-level factors.
View Article and Find Full Text PDF