Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Annual influenza epidemics pose a significant burden on the global healthcare system. The currently available vaccines mainly induce the production of neutralizing antibodies against hemagglutinin and neuraminidase, which are prone to antigenic variation, and this can reduce vaccine efficacy. Vaccines designed to target T cell epitopes can be potentially valuable. Considering the difficulties in obtaining clinical samples and the unique advantages of mice in disease-related research, a mouse model that can simulate human immune responses can be a superior alternative to peripheral blood mononuclear cells for epitope screening.

Methods: The T cell epitopes of the A/California/07/2009 (H1N1) virus were predicted and utilized to evaluate the cellular immune responses of HLA-A2/DR1 and HLA-A11/DR1 transgenic mice during epitope screening. The selected peptides were used to immunize these two groups of transgenic mice, followed by a viral challenge to assess their protective efficacy.

Results: The epitopes that were predicted and screened could stimulate cellular immune responses in HLA-A2/DR1 transgenic mice, HLA-A11/DR1 transgenic mice, and C57BL/6 mice. Moreover, the transgenic mice exhibited stronger ability to produce IFN-γ than that of the wild-type mice. Upon immunization and subjecting to viral challenge, the selected peptides exhibited protective effects against the influenza virus.

Conclusions: The HLA-A2/DR1 and HLA-A11/DR1 transgenic mouse models can be used for the direct screening and validation of influenza virus T cell epitopes, which is crucial for designing T cell epitope vaccines against influenza viruses. Further, this method can be applied in epitope screening and vaccine designing before the spread of other emerging and sudden infectious diseases, thereby supporting epidemic control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945804PMC
http://dx.doi.org/10.3390/vaccines13030331DOI Listing

Publication Analysis

Top Keywords

transgenic mice
24
cell epitopes
16
immune responses
12
hla-a11/dr1 transgenic
12
mice
9
cellular immune
8
responses hla-a2/dr1
8
hla-a2/dr1 hla-a11/dr1
8
epitope screening
8
selected peptides
8

Similar Publications

Sorting nexin 3 promotes ischemic retinopathy through RIP1- and RIP3-mediated myeloid cell necroptosis and mitochondrial fission.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De

Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.

View Article and Find Full Text PDF

ATG16L1 controls mammalian vacuolar proton ATPase.

J Cell Biol

October 2025

Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.

The mechanisms governing mammalian proton pump V-ATPase function are of fundamental and medical interest. The assembly and disassembly of cytoplasmic V1 domain with the membrane-embedded V0 domain of V-ATPase is a key aspect of V-ATPase localization and function. Here, we show that the mammalian protein ATG16L1, primarily appreciated for its role in canonical autophagy and in noncanonical membrane atg8ylation processes, controls V-ATPase.

View Article and Find Full Text PDF

In this study, we investigated the therapeutic potential of calycosin (from Astragalus) in Alzheimer's disease (AD), focusing on ferroptosis modulation. APP/PS1 mice received 40 mg/kg calycosin for 3 months. Cognitive function was assessed via Morris water maze test.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) and vascular dementia (VaD) have distinct pathognomonic features, but they frequently co-occur as mixed dementia (MD) in elderly adults. This study aimed to develop a novel MD mouse model using bilateral carotid artery stenosis (BCAS) in 5 times familial Alzheimer's disease (5xFAD) transgenic mice and characterize its behavioral and histological features.

Methods: Thirteen C57BL/6 and sixteen 5xFAD transgenic mice were prepared.

View Article and Find Full Text PDF

Steroid-refractory gut acute graft-versus-host disease (SR-Gut-aGVHD) is the major cause of nonrelapse death after allogeneic hematopoietic cell transplantation. High numbers of donor-type IL-22+ T cells, IL-22-dependent dysbiosis, and loss of antiinflammatory CX3CR1hi mononuclear phagocytes (MNPs) play critical roles in SR-Gut-aGVHD pathogenesis. CEACAM1 on intestinal epithelial cells (IECs) is proposed to regulate bacterial translocation and subsequent immune responses in the intestine.

View Article and Find Full Text PDF