Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Proteomic workflows generate vastly complex peptide mixtures that are analyzed by liquid chromatography-tandem mass spectrometry, creating thousands of spectra, most of which are chimeric and contain fragment ions from more than one peptide. Because of differences in data acquisition strategies such as data-dependent, data-independent or parallel reaction monitoring, separate software packages employing different analysis concepts are used for peptide identification and quantification, even though the underlying information is principally the same. Here, we introduce CHIMERYS, a spectrum-centric search algorithm designed for the deconvolution of chimeric spectra that unifies proteomic data analysis. Using accurate predictions of peptide retention time, fragment ion intensities and applying regularized linear regression, it explains as much fragment ion intensity as possible with as few peptides as possible. Together with rigorous false discovery rate control, CHIMERYS accurately identifies and quantifies multiple peptides per tandem mass spectrum in data-dependent, data-independent or parallel reaction monitoring experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074992 | PMC |
http://dx.doi.org/10.1038/s41592-025-02663-w | DOI Listing |