Circulating Biomarkers to Predict Post-Operative Cognitive Decline in Patients Undergoing Coronary Artery Bypass Grafting.

Cell Mol Neurobiol

Neurology Service, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), University of Pittsburgh Medical Center (UPMC), 90127, Palermo, Italy.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Post-operative cognitive decline (POCD) is characterized by impairments in cognitive functions. Coronary artery bypass grafting (CABG) is associated with a high risk of POCD due to its impact on neuroinflammation and oxidative stress. In this study, we investigated the dynamics of neurotrophic, inflammatory, and oxidative stress markers in a cohort of post-CABG patients to identify potential biomarkers for POCD. Blood samples were collected at baseline (immediately post-surgery) and at 3-month follow-up. Expression levels of NRF2 and other regulators of oxidative stress (GST, GSS, HMOX1, CAT, HSP27, and LOX-1), inflammatory mediators (IL-6, IP-10, and NFκB), and neuroprotective factor (BDNF) were analyzed. Cognitive assessments were performed using RBANS, TMT, TIB and MMSE. POCD patients exhibited an initial upregulation of NRF2-related antioxidant genes, which failed to sustain at 3-months follow-up, leading to a decline in HMOX1, IP-10 and BDNF protein levels, along with increased LOX-1 protein level and NFκB expression, indicating persistent oxidative stress and inflammation. In contrast, non-POCD patients demonstrated a sustained increase in antioxidant and neuroprotective markers, suggesting a more effective compensatory response. ROC analysis identified HMOX1 and BDNF as significant predictors of POCD, with LOX-1 and IP-10 emerging as diagnostic markers at follow-up. In conclusion, our findings highlight the dynamic regulation of oxidative stress and inflammatory pathways in POCD, emphasizing the failure of sustained neuroprotection in affected patients. Further large-scale studies are necessary to validate these findings, and biomarker-based screening could facilitate early risk stratification and targeted interventions to improve cognitive outcomes after cardiac surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12009791PMC
http://dx.doi.org/10.1007/s10571-025-01553-1DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
post-operative cognitive
8
cognitive decline
8
coronary artery
8
artery bypass
8
bypass grafting
8
pocd
6
cognitive
5
patients
5
oxidative
5

Similar Publications

Heart failure (HF) is a multifactorial and pathophysiological complex syndrome, involving not only neurohormonal activation but also oxidative stress, chronic low-grade inflammation, and metabolic derangements. Central to the cellular defence against oxidative damage is nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that orchestrates antioxidant and cytoprotective responses. Preclinical in vitro and in vivo studies reveal that Nrf2 signalling is consistently impaired in HF, contributing to the progression of myocardial dysfunction.

View Article and Find Full Text PDF

Background: Free radicals play a key role in spinal cord injury and curcumin has the potential to act as an antioxidant agent. Controlled delivery of curcumin can be achieved through encapsulation in bovine serum albumin to form nanoparticles, and acellular scaffold can bridge lesions and improve axonal growth in spinal cord injury.

Objective: In this study, we evaluated the antioxidant effects of the scaffold containing curcumin nanoparticles in the unilateral spinal cord injury model in male rats.

View Article and Find Full Text PDF

Silkworms are emerging as a sustainable food source to address global food security, with their proteins recognized for nutritional and medicinal benefits. However, the impact of silkworm oil on immunological and pharmacological effects remains unexplored. This study explores the effects of the muga (Antheraea assamensis Helfer) silkworm pupal oil fraction (MP) on palmitic acid (PA) induced hepatic steatosis, inflammation, and oxidative stress.

View Article and Find Full Text PDF

Polyphenols, rich in phenolic structures, are widely found in plants and known for disturbing the cellular oxidative stress and regulating the signal pathways of tumor proliferation and metastasis, making them valuable in cancer therapy. Polyphenols display high adherence due to the presence of phenolic hydroxyl groups, which enables the formation of covalent and non-covalent interactions with different materials. However, nonspecific adhesion of polyphenols carries significant risks in applications as polyphenols might adhere to proteins and polysaccharides in the bloodstream or gastrointestinal tract, leading to thrombosis and lithiasis.

View Article and Find Full Text PDF

Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.

View Article and Find Full Text PDF