Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Hepatocellular carcinoma (HCC) presents formidable therapeutic challenges due to its pronounced metabolic heterogeneity, particularly arising from spatially uneven glucose availability within the tumor microenvironment (TME). To address this, we developed a glutathione (GSH)-responsive, biomimetic hybrid nanoenzyme system (M@GOx/Fe-HMON) composed of hollow mesoporous organosilica nanoparticles co-loaded with glucose oxidase (GOx) and Fe/Fe redox pairs, and cloaked in homologous tumor cell membranes for enhanced targeting. In glucose-rich regions, the nanoenzyme orchestrates a GOx-peroxidase (POD) cascade that produces reactive oxygen species (ROS) via the Fenton reaction, leading to ferroptosis through intensified oxidative stress and GSH depletion. Conversely, under glucose-deficient conditions, the nanoenzyme promotes disulfidptosis by aggravating glucose deprivation, depleting nicotinamide adenine dinucleotide phosphate (NADPH), and impairing cystine metabolism, ultimately resulting in actin cytoskeletal collapse. This dual-action platform dynamically adapts to the tumor's metabolic landscape, selectively inducing ferroptosis or disulfidptosis according to glucose levels, disrupting redox homeostasis and amplifying antitumor efficacy. Notably, this study is the first to integrate ferroptosis and disulfidptosis activation into a single, metabolism-sensitive nanoenzyme system, providing a novel paradigm for exploiting tumor metabolic heterogeneity. Furthermore, the combination of endogenous metabolic regulation with magnetic resonance imaging (MRI)-guided diagnosis introduces an innovative and noninvasive strategy for precision cancer theranostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2025.137611 | DOI Listing |