Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Synaptosomal-associated protein 25 kDa (SNAP25) is essential for vesicular trafficking and protein docking at presynaptic membranes in the nervous system, yet its role in the heart remains poorly understood. Here, we show an unrecognized function of SNAP25, which is selectively expressed in the atria, in regulating atrial electrical remodeling and the onset of atrial fibrillation (AF). SNAP25 protein is downregulated in the atria of AF patients. Cardiomyocyte-specific knockout of SNAP25 in male mice significantly shortens the atrial effective refractory period and action potential duration (APD), increasing susceptibility to AF, which is attributed to elevated Kv1.5 current and membrane expression. Blocking Kv1.5 channels effectively restores atrial APD and reduces AF incidence. Mechanistically, SNAP25 deficiency reduces the internalization of Kv1.5 from the cell surface membrane to early endosomes. In human iPSC-derived atrial cardiomyocytes, SNAP25 deficiency similarly elevates arrhythmic activity and accelerates repolarization. In conclusion, this study reveals that SNAP25 regulates AF susceptibility by controlling the trafficking of the atrial-specific Kv1.5 channel, highlighting SNAP25 as a promising therapeutic target for atrial arrhythmias.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12009440PMC
http://dx.doi.org/10.1038/s41467-025-59096-4DOI Listing

Publication Analysis

Top Keywords

kv15 channel
8
onset atrial
8
atrial fibrillation
8
snap25
8
snap25 deficiency
8
atrial
7
kv15
5
snap25-dependent membrane
4
membrane trafficking
4
trafficking kv15
4

Similar Publications

Rational design, synthesis, and evaluation of novel polypharmacological compounds targeting Na1.5, K1.5, and KP channels for atrial fibrillation.

J Biol Chem

April 2025

Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile; Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca, Chile. Electronic address:

Atrial fibrillation (AF) involves electrical remodeling of the atria, with ion channels such as Na1.5, K1.5, and TASK-1 playing crucial roles.

View Article and Find Full Text PDF

Trabectedin modulates macrophage polarization in the tumor-microenvironment. Role of K1.3 and K1.5 channels.

Biomed Pharmacother

May 2023

Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain. Electronic address:

Immune cells have an important role in the tumor-microenvironment. Macrophages may tune the immune response toward inflammatory or tolerance pathways. Tumor-associated macrophages (TAM) have a string of immunosuppressive functions and they are considered a therapeutic target in cancer.

View Article and Find Full Text PDF

Sigma-1 receptor modulation fine-tunes K1.5 channels and impacts pulmonary vascular function.

Pharmacol Res

March 2023

Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain. Electronic address:

K1.5 channels are key players in the regulation of vascular tone and atrial excitability and their impairment is associated with cardiovascular diseases including pulmonary arterial hypertension (PAH) and atrial fibrillation (AF). Unfortunately, pharmacological strategies to improve K1.

View Article and Find Full Text PDF

Pseudosaccharin amines as potent and selective KV1.5 blockers.

Bioorg Med Chem Lett

November 2015

Bristol-Myers Squibb Research and Development, PO Box 5400, Princeton, NJ 08534-5400, USA.

Phenethyl aminoheterocycles like compound 1 were known to be potent I(Kur) blockers although they lacked potency in vivo. Modification of the heterocycle led to the design and synthesis of pseudosaccharin amines. Compounds such as 14, 17d and 21c were found to be potent K(V)1.

View Article and Find Full Text PDF

Design, synthesis and evaluation of phenethylaminoheterocycles as K(v)1.5 inhibitors.

Bioorg Med Chem Lett

July 2014

Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, PO Box 5400, Princeton, NJ 08534-5400, USA.

Phenethylaminoheterocycles have been prepared and assayed for inhibition of the Kv1.5 potassium ion channel as a potential approach to the treatment of atrial fibrillation. A diverse set of heterocycles were identified as potent Kv1.

View Article and Find Full Text PDF