98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brs.2025.04.016 | DOI Listing |
Front Neural Circuits
September 2025
Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan.
Neuronal networks in animal brains are considered to realize specific filter functions through the precise configuration of synaptic weights, which are autonomously regulated without external supervision. In this study, we employ a single Hodgkin-Huxley-type neuron with autapses as a minimum model to computationally investigate how spike-timing-dependent plasticity (STDP) adjusts synaptic weights through recurrent feedback. The results show that the weights undergo oscillatory potentiation or depression with respect to autaptic delay and high-frequency stimulation.
View Article and Find Full Text PDFFront Hum Neurosci
August 2025
School of Biomedical Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
Cocaine use disorder (CUD) is characterized by cortico-striatal circuit dysregulation and high relapse rates, with repetitive transcranial magnetic stimulation (rTMS) emerging as a potential neuromodulatory intervention. This study investigates rTMS-induced dynamic brain network reconfigurations in 30 CUD patients using longitudinal resting-state fMRI from the SUDMEX-TMS cohort. Applying Leading Eigenvector Dynamics Analysis (LEiDA) to phase-locking states, we identified four metastable network configurations mapped to canonical resting-state networks.
View Article and Find Full Text PDFbioRxiv
August 2025
Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA.
Proteins function through dynamic interactions with other proteins in cells, forming complex networks fundamental to cellular processes. While high-resolution and high-throughput methods have significantly advanced our understanding of how proteins interact with each other, the molecular details of many important protein-protein interactions are still poorly characterized, especially in non-mammalian species, including . Recent advancements in deep learning techniques have enabled the prediction of molecular details in various cellular pathways at the network level.
View Article and Find Full Text PDFBiomedicines
August 2025
Medical Section, Romanian Academy, 010071 Bucharest, Romania.
Neurodegeneration is increasingly recognized not as a linear trajectory of protein accumulation, but as a multidimensional collapse of biological organization-spanning intracellular signaling, transcriptional identity, proteostatic integrity, organelle communication, and network-level computation. This review intends to synthesize emerging frameworks that reposition neurodegenerative diseases (ND) as progressive breakdowns of interpretive cellular logic, rather than mere terminal consequences of protein aggregation or synaptic attrition. The discussion aims to provide a detailed mapping of how critical signaling pathways-including PI3K-AKT-mTOR, MAPK, Wnt/β-catenin, and integrated stress response cascades-undergo spatial and temporal disintegration.
View Article and Find Full Text PDFNat Commun
August 2025
Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan.
Light scattering in the skull limits optical access to the brain. Here we present SeeThrough, a skull-clearing technique that enables simple, high-resolution, and minimally-invasive brain imaging without skull removal. Through systematic screening of over 1600 chemicals, we rationally developed a refractive index-matching solution that combines water- and organic solvent-based components, achieving both high clearing efficiency and biocompatibility.
View Article and Find Full Text PDF