Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This paper presents a novel computational engine based on non-recursive discrete Fourier transform (DFT) technology to detect high-resistance faults (HRFs) in power distribution networks. The non-recursive DFT approach utilizes the interconnection between a sliding window for current signals and a foundation function window during transient error. This non-recursive DFT technology is characterized by a fixed error in amplitude calculation and a rotated output angle. The proposed technique is compared against several established methods for high-resistance fault detection in distribution systems, including current reconstruction (CR) using Rogowski coils, Kalman filtering, and least-squares computational engines. The performance of each technique is evaluated by assessing the estimated percentage error in the calculation of fundamental and harmonic amplitudes. To study the proposed technique, the aforementioned methods were carefully modeled and simulated using MATLAB software for the IEEE 33-bus test feeder, simulated arcing faults, and Rogowski coils under various test conditions. The comparison is conducted under the influence of different arc models in the distribution system to assess the performance of the proposed technology. The comparative results demonstrate the effectiveness of the proposed non-recursive DFT-based technique in detecting high-resistance faults in power distribution networks, outperforming the other established methods considered in this study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005528 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0320125 | PLOS |