Advancements in one-dimensional protein structure prediction using machine learning and deep learning.

Comput Struct Biotechnol J

School of Computer Science, University College Dublin, Belfield, Dublin D04 C1P1, Ireland.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The accurate prediction of protein structures remains a cornerstone challenge in structural bioinformatics, essential for understanding the intricate relationship between protein sequence, structure, and function. Recent advancements in Machine Learning (ML) and Deep Learning (DL) have revolutionized this field, offering innovative approaches to tackle one- dimensional (1D) protein structure annotations, including secondary structure, solvent accessibility, and intrinsic disorder. This review highlights the evolution of predictive methodologies, from early machine learning models to sophisticated deep learning frameworks that integrate sequence embeddings and pretrained language models. Key advancements, such as AlphaFold's transformative impact on structure prediction and the rise of protein language models (PLMs), have enabled unprecedented accuracy in capturing sequence-structure relationships. Furthermore, we explore the role of specialized datasets, benchmarking competitions, and multimodal integration in shaping state-of-the-art prediction models. By addressing challenges in data quality, scalability, interpretability, and task-specific optimization, this review underscores the transformative impact of ML, DL, and PLMs on 1D protein prediction while providing insights into emerging trends and future directions in this rapidly evolving field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12002955PMC
http://dx.doi.org/10.1016/j.csbj.2025.04.005DOI Listing

Publication Analysis

Top Keywords

machine learning
12
deep learning
12
protein structure
8
structure prediction
8
learning deep
8
language models
8
transformative impact
8
protein
6
learning
6
structure
5

Similar Publications

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF

Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.

Setting: West China Hospital of Sichuan University, China.

Design: Deep-learning study.

View Article and Find Full Text PDF

Predicting Unplanned Readmission Risk in Patients With Cirrhosis: Complication-Aware Dynamic Classifier Selection Approach.

JMIR Med Inform

September 2025

College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.

Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.

View Article and Find Full Text PDF

Diagnostic and Screening AI Tools in Brazil's Resource-Limited Settings: Systematic Review.

JMIR AI

September 2025

Faculty of Medicine, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/n - Tabuleiro do Martins, Maceió, 57072-900, Brazil, 558232141461.

Background: Artificial intelligence (AI) has the potential to transform global health care, with extensive application in Brazil, particularly for diagnosis and screening.

Objective: This study aimed to conduct a systematic review to understand AI applications in Brazilian health care, especially focusing on the resource-constrained environments.

Methods: A systematic review was performed.

View Article and Find Full Text PDF