A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhancing security in electromagnetic radiation therapy using fuzzy graph theory. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This research investigates the application of fuzzy graph theory to address critical security challenges in electromagnetic radiation therapy systems. Through comprehensive theoretical analysis and experimental validation, we introduce novel approaches leveraging fuzzy cognitive maps and fuzzy graph-based architectures for access control, intrusion detection, secure communication, and risk assessment. The study demonstrates significant improvements over traditional security measures across multiple performance metrics. The fuzzy graph-based access control model achieved a 2.5% false acceptance rate compared to 7.8% in traditional systems, while intrusion detection accuracy improved to 95% with only 3% false positives. Secure communication protocols demonstrated 98% confidentiality and 96% integrity rates, surpassing conventional methods. Risk assessment coverage increased to 92% with reduced false positives. The system maintained linear scaling in processing time from 180 ms at 1000 to 320 ms at 100,000 records, with CPU utilization remaining between 65 and 72%. These findings underscore the immense potential of fuzzy graph theory in strengthening the safety and privacy of electromagnetic radiation therapy systems, providing a foundation for future research and clinical adoption. The study also identifies key directions for future research, including machine learning integration, blockchain implementation, and scalability optimization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003913PMC
http://dx.doi.org/10.1038/s41598-025-98110-zDOI Listing

Publication Analysis

Top Keywords

electromagnetic radiation
12
radiation therapy
12
fuzzy graph
12
graph theory
12
therapy systems
8
fuzzy graph-based
8
access control
8
intrusion detection
8
secure communication
8
risk assessment
8

Similar Publications