ROOT INITIATION DEFECTIVE 1 regulates seed germination through transcription rather than alternative splicing in a temperature-dependent manner.

Plant Mol Biol

Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai'an, 223300, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Timely seed germination is a crucial process for plant survival and subsequent propagation, which is significantly impacted by high temperatures. ROOT INITIATION DEFECTIVE 1 (RID1), an Arabidopsis DEAH/RHA RNA helicase, has been previously reported to modulate the cellular specification of mature female gametophyte and callus initiation from hypocotyl explants through proper alternative splicing. However, the role of RID1 in the regulation of seed germination remains largely unexplored. Here, we identified that mutations in RID1 delayed seed germination more severely at 28℃ compared to 22℃. Notably, we found that the rid1-1 mutation did not significantly alter genome-wide alternative splicing patterns during seed germination compared to the wild type. Further evidences demonstrated that RID1 regulates seed germination via the abscisic acid (ABA) pathway by physically and genetically interacting with the SKIP-associated transcriptional complex. These results suggest that RID1 regulates seed germination in response to ambient temperature at the transcriptional level rather than through alternative splicing regulation. This study provides novel insights into the mechanisms underlying the regulation of seed germination.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-025-01587-5DOI Listing

Publication Analysis

Top Keywords

seed germination
32
alternative splicing
16
regulates seed
12
root initiation
8
initiation defective
8
seed
8
germination
8
regulation seed
8
rid1 regulates
8
rid1
5

Similar Publications

Physicochemical, microbiological, and microstructural changes in germinated wheat grain.

PLoS One

September 2025

Department of Science, LLP "Research and Production Enterprise "Innovator", Astana, Kazakhstan.

This study investigates the physicochemical, microbiological, and microstructural changes in soft wheat grain during germination under varying moisture conditions: moderately dry, moist, and wet. Pre-harvest sprouting can severely compromise grain quality and usability; however, understanding germination-induced changes offers insights into potential utilization strategies. Physical parameters-including thousand-kernel weight, test weight, and falling number-showed strong correlation with germination time, decreasing by 8.

View Article and Find Full Text PDF

Treatment of seeds with cold atmospheric pressure plasma (CAPP) is in its proof-of-concept phase with regard to its effect on germination and plant growth. To increase the germination of hardseeded red clover (Trifolium pratense L.), seeds are usually scarified, which is time-consuming and labour-intensive.

View Article and Find Full Text PDF

Due to the growing environmental and health concerns with chemical plant stimulants, there is a growing need to find alternative sources of plant stimulants that could help the seeds germinate and sustain their growth in the global climate change scenario. The article compares various seed stimulants such as chemical compounds (benzothiadiazole, salicylic acid, glycine betaine), alcoholic extracts from commercial plant products (English oak bark, ginger spices, turmeric spices, caraway fruits) and from wild plant leaves (Japanese pagoda tree, Himalayan balsam, stinging nettle and Bohemian knotweed) and their effects on wheat seed germination and seedling characteristics. It was found that BTH had significantly lower effect on seedling characteristics such as SG3 (%), SG5 (%), R/S III, SVI I (mm) and SVI III (mg) followed by ZO on SG3 (%), SG5 (%) and GI (unit).

View Article and Find Full Text PDF

Flumioxazin-based herbicides are frequently used in agriculture to control broadleaf weeds attributed to their high efficacy, rapid action, and residual soil activity, making these compounds a preferred choice over other herbicides in pre-emergence weed control. Due to their beneficial properties, use of these herbicides has significantly increased in recent years, raising concerns regarding potential environmental risks. This study aimed to examine the effects of a commercial flumioxazin-based formulation on different plant models.

View Article and Find Full Text PDF

Seed coat-derived ABA regulates seed dormancy of by modulating ABA and GA balance.

Front Plant Sci

September 2025

College of Life Sciences, Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China of Ministry of Education, Shaanxi Normal University, Xi'an, China.

Plant seeds have evolved diverse dormancy types and regulatory mechanisms to adapt to environmental conditions and seasonal changes. As a commonly used rootstock for cultivated pears, faces challenges in seedling production and large-scale cultivation due to limited understanding of seed dormancy mechanisms. In this study, we report that seeds exhibit non-deep physiological dormancy, with seed coats playing a pivotal regulatory role.

View Article and Find Full Text PDF