Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The interplay between nontrivial band topology and layered antiferromagnetism in MnBiTe has opened a new avenue for exploring topological phases of matter. The quantum anomalous Hall effect and axion insulator state have been observed in odd and even number layers of MnBiTe, and the quantum metric nonlinear Hall effect has been shown to exist in this topological antiferromagnet. The rich and complex antiferromagnetic spin dynamics in MnBiTe is expected to generate new quantum anomalous Hall phenomena that are absent in conventional ferromagnetic topological insulators, but experimental observations are still unknown. Here we fabricate a device of 7-septuple-layer MnBiTe covered with an AlO capping layer, which enables the investigation of antiferromagnetic quantum anomalous Hall effect over wide parameter spaces. By tuning the gate voltage and perpendicular magnetic field, we uncover a cascade of quantum phase transitions that can be attributed to the influence of complex spin configurations on edge state transport. Furthermore, we find that an in-plane magnetic field enhances both the coercive field and the exchange gap of the surface state, in contrast to that in the ferromagnetic quantum anomalous Hall state. Combined with numerical simulations, we propose that these peculiar features arise from the spin flip and flop transitions that are inherent to a van der Waals antiferromagnet. The versatile tunability of the quantum anomalous Hall effect in MnBiTe paves the way for potential applications in topological antiferromagnetic spintronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-025-08860-z | DOI Listing |