A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Sericin-Based 3D High-Precision Biomimetic Microscaffold Fabricated by Laser Direct Writing for Tissue Engineering. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In tissue engineering, scaffolds are designed to mimic the extracellular matrix (ECM), creating three-dimensional (3D) microenvironments that support cell adhesion and growth. However, the precise fabrication of heterogenenous ECM-mimicking 3D microstructures remains an unsolved challenge. To address this, high-precise sericin-based scaffolds were developed via femtosecond laser direct writing (FsLDW) technology. Chemically modified sericin served as a monomer in the FsLDW process, achieving nanoscale precision and enabling the fabrication of arbitrary 3D sericin microstructures. Biomimetic 3D models, derived from natural tissue matrices, were employed to construct heterogenenous sericin bioscaffolds. These anisotropic scaffolds effectively supported cell directional growth and differentiation. This advancement greatly enhances the precision of sericin-based tissue-engineered scaffolds, enabling the creation of heterogenenous, multifunctional microenvironments that mimic natural ECM to support functional tissue development and address challenges in accurately simulating ECM microstructures in tissue regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.5c00346DOI Listing

Publication Analysis

Top Keywords

laser direct
8
direct writing
8
tissue engineering
8
tissue
5
sericin-based high-precision
4
high-precision biomimetic
4
biomimetic microscaffold
4
microscaffold fabricated
4
fabricated laser
4
writing tissue
4

Similar Publications