Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Oxidative stress leads to intestinal barrier damage, which induces immune responses to occur and further promotes oxidative stress exacerbating inflammatory bowel disease (IBD). In this work, the multifunctional ZnCeO/Se (ZCSO) nanozyme wrapped with acid-resistant calcium alginate hydrogel designed for oral administration is prepared. The ZCSO nanozyme can promote the activation of the Nrf2 oxidative stress pathway, then significantly improve the efficiency of scavenging reactive oxygen species (ROS) and up-regulate the protein expression of glutathione peroxidase 4 (GPx4), which is closely related to the inhibition of ferroptosis. In addition, the ZCSO nanozyme inhibiting the growth of some pathogenic bacteria proliferating due to oxidative stress shows a positive regulation of the intestinal flora and reduces the secretion of pro-inflammatory factors and the levels of inflammatory macrophages, achieving the significant preventive and delayed therapeutic effect of colitis mice. Consequently, the distinctive properties of ZCSO nanozyme render it a promising candidate for the treatment of IBD by effectively scavenging ROS, thereby interrupting the detrimental cycle between oxidative stress and immune response, ultimately promoting the proliferation of epithelial cells to reestablish the integrity of the intestinal mucosal barrier.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202500088DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
zcso nanozyme
16
inflammatory bowel
8
bowel disease
8
oxidative
5
stress
5
orally administered
4
administered znceo/se
4
znceo/se hydrogel
4
hydrogel effective
4

Similar Publications

Background: High-density lipoprotein (HDL) function, rather than its concentration, plays a crucial role in the development of coronary artery disease (CAD). Diminished HDL antioxidant properties, indicated by elevated oxidized HDL (nHDL) and diminished paraoxonase-1 (PON-1) activity, may contribute to vascular dysfunction and inflammation. Data on these associations in CAD patients, including acute coronary syndrome (ACS), remain limited.

View Article and Find Full Text PDF

S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.

View Article and Find Full Text PDF

Organ transplantation faces critical challenges, including donor shortages, suboptimal preservation, ischemia-reperfusion injury (IRI), and immune rejection. Nanotechnology offers transformative solutions by leveraging precision-engineered materials to enhance graft viability and outcomes. This review highlights nanomaterials' roles in revolutionizing organ preservation.

View Article and Find Full Text PDF

Background: Voghera pepper (VP) extracts were demonstrated to have anti-oxidant ability in several cell types.

Purpose: This study aimed to assess whether VP-extracts could lower oxidative stress and modulate thyroid cancer (TC) cells behavior .

Methods: Extracts were analyzed using the LC-DAD-MS system.

View Article and Find Full Text PDF

Introduction: Fermented buffalo milk products from South Asia remain an underexplored source of microbial diversity with potential health-promoting benefits. This study investigates the probiotic and industrial suitability of lactic acid bacteria (LAB) and non-LAB isolates from traditional Pakistani dairy, addressing gaps in region-specific probiotic discovery.

Methods: Forty-seven bacterial isolates were obtained from fermented buffalo milk products (yogurt and cheese).

View Article and Find Full Text PDF