Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Over the past decade, organ-on-chip technology (microphysiological systems or tissue chips) has reshaped physiological and pathological modeling and pharmaceutical drug assessment. FDA Modernization Act 2.0 allows for alternatives to animal testing or the use of appropriate non-animal models/new approach methods (NAMs), such as Organ-on-chips (OC) platforms or simulation models, to generate pre-clinical drug trial data for regulatory purposes primes the microfluidic field to have exponential growth in the coming years. The changes in the approaches of regulatory agencies could significantly impact the development of therapeutics for use during pregnancy. However, limitations of the devices and molecular and biochemical assay shortfalls hinder the progress of the OOC field. This review describes available reproductive and pregnancy-related OOC platforms, and the current methodologies utilized to generate endpoint datasets (e.g., microscopic imaging, immunocytochemistry, real-time polymerase chain reaction, cytokine multiplex analysis). Microfluidic platform limitations, such as fewer number of cells or low supernatant volumes and restrictions regarding fabrication materials, are described. Novel approaches (e.g., spatial transcriptomics, imaging cytometry by time of flight, exosomes analysis using Exoview) to overcome these challenges are described. OOC platforms are primed to provide biologically relevant and clinically translational data that can revolutionize physiological modeling, drug discovery, and toxicologic risk assessment. However, engineering adaptations to increase the throughput of devices (i.e., device arrays) and biological advancements to improve data throughput are both needed for these platforms to reach their full potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11996799PMC
http://dx.doi.org/10.3389/fbioe.2025.1568389DOI Listing

Publication Analysis

Top Keywords

ooc platforms
8
platforms
5
modeling reproductive
4
reproductive pregnancy-associated
4
pregnancy-associated tissues
4
tissues organ-on-chip
4
organ-on-chip platforms
4
platforms challenges
4
challenges limitations
4
limitations high
4

Similar Publications

Enterohemorrhagic (EHEC), a pathotype within the Shiga toxin-producing (STEC) group, is a major etiological agent of severe gastrointestinal illness and life-threatening sequelae, including hemolytic uremic syndrome. Although insights into EHEC pathogenesis have been gained through traditional 2D cell culture systems and animal models, these platforms are limited in their ability to recapitulate human-specific physiological responses and tissue-level interactions. Recent progress in three-dimensional (3D) cell culture systems, such as spheroids, organoids, and organ-on-a-chip (OoC) technologies, has enabled more physiologically relevant models for investigating host-pathogen dynamics.

View Article and Find Full Text PDF

Organ-on-a-chip (OoC) is a rapidly advancing technology with significant potential to revolutionize healthcare, drug discovery, and personalized medicine. OoC technologies offer cost-effective and ethical platforms that enable the acquisition of physiologically relevant data and enhance our understanding of human disease mechanisms and drug responsiveness. Over the past decade, numerous academic start-ups and spin-offs have sought to translate foundational research on OoC platforms from the lab bench to commercial and real-world applications.

View Article and Find Full Text PDF

Traditional toxicological paradigms, reliant on animal testing and simplistic in vitro models, face significant limitations, including prolonged timelines, high costs, and poor translational predictability due to interspecies differences. This review highlights the transformative potential of New Approach Methodologies (NAMs) in overcoming these challenges. Key advancements include Organ-on-a-Chip (OoC) platforms that emulate human organ physiology and multi-organ crosstalk, significantly improving predictive accuracy.

View Article and Find Full Text PDF

State-of-the-Art Organ-on-Chip Models and Designs for Medical Applications: A Systematic Review.

Biomimetics (Basel)

August 2025

Postgraduate Programme in Mechatronic Systems, Department of Mechanical Engineering, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, DF, Brazil.

Unlabelled: Organ-on-a-chip (OoC) devices simulate human organs within a microenvironment, potentially surpassing traditional preclinical methods and paving the way for innovative treatments. A thorough understanding of the current state of OoC design enables the development of more precise and relevant models that replicate not only the structure of organs but also their intricate cellular interactions and responses to external stimuli. This knowledge facilitates the optimization of biomimetic materials and allows for the real-time simulation of physiological microenvironments.

View Article and Find Full Text PDF

Organoid-on-a-chip (OrgOC): Advancing cystic fibrosis research.

Mater Today Bio

October 2025

Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, 201800, China.

Cystic fibrosis (CF) is an autosomal recessive disorder resulting from impaired anion transport in the epithelium of multiple organs, thereby affecting various physiological functions throughout the body. The heterogeneity of CF complicates drug development, highlighting the growing importance of individualized therapies. CF patient-derived organoid models and organ-on-a-chip (OOC) platforms are promising in vitro models for recapitulating CF pathology, owing to their high simulation fidelity, individualized therapeutic capabilities, cost-effectiveness, and high-throughput screening potential.

View Article and Find Full Text PDF