Radiomics and machine learning for predicting metachronous liver metastasis in rectal cancer.

World J Gastrointest Oncol

Department of Supportive Oncology, Atrium Health Levine Cancer, Charlotte, NC 28204, United States.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A recent study by Long used a predictive model to explore the efficacy of radiomics based on multiparametric magnetic resonance imaging in predicting metachronous liver metastasis (MLM) in newly diagnosed rectal cancer (RC) patients. The machine learning algorithms, particularly the random forest model (RFM), appeared well-matched to the complex nature of radiomics data. The predictive capabilities of the RFM, as evidenced by the area under the curve of 0.919 in the training cohort and 0.901 in the validation cohort, highlighted its potential clinical utility. However, we highlighted several methodological limitations, including excluding genomic markers, potential biases from the retrospective design, limited generalizability due to a single-center study, and variability in image interpretation. We propose further investigation into integrating multi-omic data, conducting larger multicenter studies, and utilizing advanced imaging techniques. Additionally, we highlighted the importance of interdisciplinary collaboration to improve predictive model development and advocate for cost-effectiveness analyses to facilitate clinical integration. Overall, this predictive model may improve the early detection and management of MLM in RC patients, with promising avenues for future exploration. Ongoing research in this domain can potentially improve clinical outcomes and the quality of care for RC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11995344PMC
http://dx.doi.org/10.4251/wjgo.v17.i4.102324DOI Listing

Publication Analysis

Top Keywords

predictive model
12
machine learning
8
predicting metachronous
8
metachronous liver
8
liver metastasis
8
rectal cancer
8
radiomics machine
4
learning predicting
4
metastasis rectal
4
cancer study
4

Similar Publications

Background: Survivors of critical illness frequently face physical, cognitive and psychological impairments after intensive care. Sensorimotor impairments potentially have a negative impact on participation. However, comprehensive understanding of sensorimotor recovery and participation in survivors of critical illness is limited.

View Article and Find Full Text PDF

Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.

View Article and Find Full Text PDF

Background: Avenanthramides (AVAs) and Avenacosides (AVEs) are unique to oats (Avena Sativa) and may serve as biomarkers of oat intake. However, information regarding their validity as food intake biomarkers is missing. We aimed to investigate critical validation parameters such as half-lives, dose-response, matrix effects, relative bioavailability under single dose, and in relation to the abundance of Feacalibacterium prausnitzii, and under repeated dosing, to understand the potential applications of AVAs and AVEs as biomarkers of oat intake.

View Article and Find Full Text PDF

Background: Current scoring systems for hypertriglyceridaemia-induced acute pancreatitis (HTG-AP) severity are few and lack reliability. The present work focused on screening predicting factors for HTG-SAP, then constructing and validating the visualization model of HTG-AP severity by combining relevant metabolic indexes.

Methods: Between January 2020 and December 2024, retrospective clinical information for HTG-AP inpatients from Weifang People's Hospital was examined.

View Article and Find Full Text PDF

Background: Anxiety symptoms during pregnancy are a frequent mental health issue for expectant mothers and fathers. Research revealed that prenatal anxiety symptoms can impact parent-child bonding and child development. This study aims to investigate the prospective relationship between prenatal anxiety symptoms and general child development and whether it is mediated by parent-child bonding.

View Article and Find Full Text PDF