A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Diagnosis accuracy of machine learning for idiopathic pulmonary fibrosis: a systematic review and meta-analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The diagnosis of idiopathic pulmonary fibrosis (IPF) is complex, which requires lung biopsy, if necessary, and multidisciplinary discussions with specialists. Clinical diagnosis of the two ailments is particularly challenging due to the impact of interobserver variability. Several studies have endeavored to utilize image-based machine learning to diagnose IPF and its subtype of usual interstitial pneumonia (UIP). However, the diagnostic accuracy of this approach lacks evidence-based support.

Objective: We conducted a systematic review and meta-analysis to explore the diagnostic efficiency of image-based machine learning (ML) for IPF.

Data Sources And Methods: We comprehensively searched PubMed, Cochrane, Embase, and Web of Science databases up to August 24, 2024. During the meta-analysis, we carried out subgroup analyses by imaging source (computed radiography/computed tomography) and modeling type (deep learning/other) to evaluate its diagnostic performance for IPF.

Results: The meta-analysis findings indicated that in the diagnosis of IPF, the C-index, sensitivity, and specificity of ML were 0.93 (95% CI 0.89-0.97), 0.79 (95% CI 0.73-0.83), and 0.84 (95% CI 0.79-0.88), respectively. The sensitivity of radiologists/clinicians in diagnosing IPF was 0.69 (95% CI 0.56-0.79), with a specificity of 0.93 (95% CI 0.74-0.98). For UIP diagnosis, the C-index of ML was 0.91 (95% CI 0.87-0.94), with a sensitivity of 0.92 (95% CI 0.80-0.97) and a specificity of 0.92 (95%CI 0.82-0.97). In contrast, the sensitivity of radiologists/clinicians in diagnosing UIP was 0.69 (95% CI 0.50-0.84), with a specificity of 0.90 (95% CI 0.82-0.94).

Conclusions: Image-based machine learning techniques demonstrate robust data processing and recognition capabilities, providing strong support for accurate diagnosis of idiopathic pulmonary fibrosis and usual interstitial pneumonia. Future multicenter large-scale studies are warranted to develop more intelligent evaluation tools to further enhance clinical diagnostic efficiency. Trial registration This study protocol was registered with PROSPERO (CRD42022383162).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001705PMC
http://dx.doi.org/10.1186/s40001-025-02501-xDOI Listing

Publication Analysis

Top Keywords

machine learning
16
idiopathic pulmonary
12
pulmonary fibrosis
12
image-based machine
12
95%
9
systematic review
8
review meta-analysis
8
diagnosis idiopathic
8
usual interstitial
8
interstitial pneumonia
8

Similar Publications