Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Membranous nephropathy (MN) is one of the most common glomerular diseases. Although the diagnostic method based on serum PLA2R antibodies has gradually been applied in clinical practice, only 52-86% of PLA2R-associated MN patients show positive anti-PLA2R antibodies. Therefore, renal biopsy remains the gold standard for diagnosing MN. However, the renal biopsy procedure is highly complex and involves multiple steps, including tissue sampling, fixation, dehydration, embedding, sectioning, PAS staining, Masson trichrome staining, and silver staining. Each step requires precise technique from laboratory personnel, as any error can affect the quality of the final tissue sections and, consequently, the diagnosis. As a result, there is an urgent need to develop a method that enables rapid diagnosis after renal biopsy. Previous studies have shown that Raman spectroscopy offers promising results for diagnosing MN, exhibiting high sensitivity and specificity when applied to human serum and urine samples. In this study, we propose a rapid diagnostic method combining Raman spectroscopy of mouse kidney tissue with a CNN-BiLSTM deep learning model. The model achieved 98% accuracy, with specificity and sensitivity of 98.3%, providing a novel auxiliary tool for the pathological diagnosis of MN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12000437PMC
http://dx.doi.org/10.1038/s41598-025-97351-2DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
12
renal biopsy
12
rapid diagnosis
8
membranous nephropathy
8
kidney tissue
8
deep learning
8
diagnostic method
8
diagnosis membranous
4
nephropathy based
4
based kidney
4

Similar Publications

A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.

View Article and Find Full Text PDF

The development of analytical techniques applicable to powdered pharmaceutical co-crystals, including those containing excipients, represents a comprehensive strategy for quality control in both drug development and regulatory settings. This study investigates the structural characterization of indomethacin-nicotinamide co-crystals using a combination of microcrystal electron diffraction (microED), solid-state NMR (SSNMR), Raman spectroscopy, and powder X-ray diffraction (PXRD). MicroED analysis revealed the crystal structure of the co-crystal, while SSNMR measurements provided insights into the molecular interactions within the structure.

View Article and Find Full Text PDF

Osteocalcin promotes mineralization in bone microenvironment via regulating hydroxyapatite formation and integration.

Int J Biol Macromol

September 2025

Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, 100049, China; Research Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. Electronic

Within the bone microenvironment, the intricate interplay and regulation among matrix components form a complex network. Disentangling this network is crucial for uncovering potential therapeutic targets in bone pathology. Osteocalcin (OCN), the most abundant non-collagenous bone protein, is an essential node within this network.

View Article and Find Full Text PDF

Balanced biocompatibility in high-viscosity hydroxypropyl methylcellulose-based sponge containing nanoconfined silver citrate nanoparticles.

Int J Biol Macromol

September 2025

Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, PR China. Electronic address:

Balancing antibacterial efficacy, mechanical integrity, and biocompatibility remains a critical challenge in drug release systems for wound dressings. Many antimicrobial agents exhibit inherent cytotoxicity, compromising cell viability and tissue compatibility. To address this, an Absorbable Gelatine Sponge was synthetised based on high-viscosity hydroxypropyl methylcellulose (HPMC K100M) and loaded with silver citrate nanorods (AgCit), which confine silver nanoparticles to enable controlled ion release.

View Article and Find Full Text PDF

Artificial intelligence-driven fermentation optimization for α-amylase hyperproduction enabled by Raman monitoring and metabolic network analysis.

Bioresour Technol

September 2025

State Key Laboratory of Bioreactor Engineering, Qingdao Innovation Institute of East China University of Science and Technology, East China University of Science and Technology, Shanghai 200237, China; National Center of Bio-Engineering & Technology (Shanghai), East China University of Science and T

α-Amylase is a high-value enzyme widely applied in food, feed, textile, and bioenergy industries, yet achieving stable high-level production in Aspergillus niger remains difficult due to nonlinear fermentation dynamics and limited real-time control. To this end, an AI-driven fermentation optimization framework was established by combining multivariate machine learning, Raman spectroscopy-based glucose monitoring, and time-series transcriptomics. Twelve algorithms were benchmarked, with Random Forest showing the best predictive power, while SHAP interpretation highlighted glucose as the dominant regulatory factor.

View Article and Find Full Text PDF