A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

VibTac: A High-Resolution High-Bandwidth Tactile Sensing Finger for Multi-Modal Perception in Robotic Manipulation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tactile sensing is pivotal for enhancing robot manipulation abilities by providing crucial feedback for localized information. However, existing sensors often lack the necessary resolution and bandwidth required for intricate tasks. To address this gap, we introduce VibTac, a novel multi-modal tactile sensing finger designed to offer high-resolution and high-bandwidth tactile sensing simultaneously. VibTac seamlessly integrates vision-based and vibration-based tactile sensing modes to achieve high-resolution and high-bandwidth tactile sensing respectively, leveraging a streamlined human-inspired design for versatility in tasks. This paper outlines the key design elements of VibTac and its fabrication methods, highlighting the significance of the Elastomer Gel Pad (EGP) in its sensing mechanism. The sensor's multi-modal performance is validated through 3D reconstruction and spectral analysis to discern tactile stimuli effectively. In experimental trials, VibTac demonstrates its efficacy by achieving over 90% accuracy in insertion tasks involving objects emitting distinct sounds, such as ethernet connectors. Leveraging vision-based tactile sensing for object localization and employing a deep learning model for "click" sound classification, VibTac showcases its robustness in real-world scenarios. Video of the sensor working can be accessed at https://youtu.be/kmKIUlXGroo.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TOH.2025.3561049DOI Listing

Publication Analysis

Top Keywords

tactile sensing
28
high-resolution high-bandwidth
12
high-bandwidth tactile
12
tactile
8
sensing
8
sensing finger
8
vibtac
6
vibtac high-resolution
4
finger multi-modal
4
multi-modal perception
4

Similar Publications