98%
921
2 minutes
20
Thermal conductivity in nanoparticle solids has been previously reported in the range of 0.1-1 W m K, which is a much smaller variation than the orders of magnitude differences achievable in electrical conductivity of similar systems. Both the low absolute magnitude of thermal conductivity and the relative insensitivity compared to electrical conductivity may be largely attributed to the poor interfacial thermal conductance of the many interfaces of the nanocrystal solid, but a direct experimental study of these interfaces is challenging. Here, we overcome this challenge via direct spectroscopic observation of heat flow within the components of a nanocrystal solid. These thermal transfers are studied by mixing two distinct types of particles: one that serves as a selectively excited antenna to inject heat and the other as the thermal acceptor to report the time-dependent change in temperature. Using transient spectroscopy, the equilibration between the heat donor and heat acceptor is observed to require ∼300 ps at room temperature, speeds up at reduced temperature, and has only weak sensitivity to the relative stoichiometry of the components or the intervening ligands. These results contrast strongly with the 10-20 ps time-scale of through-bond heat transfer at the ligand-particle surface and highlight the substantially lower interfacial thermal conductance of particle-to-particle transport without covalent bonding. It is also found, serendipitously, that the mixed composite films show an unexpected, substantially enhanced nonlinear absorption at the resonant wavelength of the plasmonic particles, which is tentatively attributed to a local field enhancement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c18541 | DOI Listing |
iScience
September 2025
State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
Super austenitic stainless steels (SASS) face challenges like galvanic corrosion and antibacterial performance when welded to carbon steel (Q235) in marine environments. This study demonstrates that adding 1.0 wt% cerium (Ce) to SASS refines the heat-affected zone (HAZ) grain structure (from 7 μm to 2 μm), suppresses detrimental σ-phase precipitation, and forms a dense oxide film.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
Thermocells (TECs) represent a promising technology for sustainable low-grade waste heat (<100 °C) harvesting, offering distinct advantages such as scalability, structural versatility, and high thermopower. However, their practical applications are still hindered by low energy conversion efficiency and stability issues. In recent studies, electrolyte engineering has been highlighted as a critical strategy to enhance their thermopower by regulating the solvation structure and redox ion concentration gradient, thereby improving conversion efficiency.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Biotechnology, Graduate School of Engineering, The University of Osaka, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
During brewing processes, proteins such as lipid transfer protein 1 (LTP1) are exposed to high temperatures, which later affects the beer foam properties. To develop high-quality beer, it is therefore essential to understand the protein chemical modifications and structural alternations induced by the high temperatures and their impact on beer foam. This study characterizes heat-induced chemical modifications and changes in the molecular size distribution and structure of LTP1 and its lipid-bound isoform, LTP1b, using size-exclusion chromatography and reverse-phase chromatography/mass spectrometry.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Max Planck Institute for Solar System Research, Göttingen 37077, Germany.
Turbulent convection governs heat transport in both natural and industrial settings, yet optimizing it under extreme conditions remains a significant challenge. Traditional control strategies, such as predefined temperature modulation, struggle to achieve substantial enhancement. Here, we introduce a deep reinforcement learning (DRL) framework that autonomously discovers optimal control policies to maximize heat transfer in turbulent Rayleigh-Bénard convection.
View Article and Find Full Text PDFFood Res Int
November 2025
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS) / Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; College of Food Science, Shenyang Agricultural University, Shenyang 110866, China. Electronic a
While restructuring agricultural products enhances heat and mass transfer during freeze-drying, the underlying mechanisms remain poorly understood. This study employed a multiscale approach, combining freezing dynamics, sublimation drying kinetics, X-ray tomography, gas permeability assessments, thermodynamic parameters analysis, and mathematical modeling to systematically investigate the differences in transfer properties between natural and restructured peaches across the freezing and sublimation drying processes. Key results demonstrated that restructuring decreased the freezing time by 21.
View Article and Find Full Text PDF