A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Recent Advances in Physicochemical Control and Potential Green Ecologic Strategies Related to the Management of Mold in Stored Grains. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Grain serves as an essential cornerstone for sustaining life and social stability. However, during storage grain is often invaded by mold, which leads to mildew issues. This problem diminishes nutrient content and food quality and raises safety concerns, including toxin production, which can cause serious economic losses and catastrophic market stability and national food security conditions. Accordingly, implementing effective measures to prevent and control mold is crucial for ensuring grain storage safety. This paper analyzes the molds that affect grain during storage, discussing their varieties, environmental needs, and potential hazards. It also expounds on corresponding prevention and control measures, including physical methods, chemical approaches, innovative mold inhibitors derived from microbes and plants, and micro-nano prevention and control technology. These measures demonstrate significant mold suppression by destroying the cell structure of mold or inhibiting its physiological processes. In particular, micro-nano technology enables the effective embedding and controlled release of active ingredients. It can prolong the release duration and enhance antibacterial stability, thus achieving more effective control effects. Furthermore, it can be concluded that these strategies provide a theoretical foundation to enhance the safety and efficiency of grain storage. Additionally, they assist in more effectively addressing mold-related challenges while ensuring food security.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941180PMC
http://dx.doi.org/10.3390/foods14060961DOI Listing

Publication Analysis

Top Keywords

grain storage
12
food security
8
prevention control
8
mold
6
control
5
grain
5
advances physicochemical
4
physicochemical control
4
control potential
4
potential green
4

Similar Publications