98%
921
2 minutes
20
The PARP-1/2 inhibitors have been approved for the treatment of cancers by modulating the enzymatic activity and/or the trapping ability for damaged DNA of PARP-1 and/or PARP-2, and the selective PARP-1 inhibitors are now attracting considerable attention with an aim to search for drug candidates with an improved safety. Exploring the structural basis of the selectivity and trapping capability of known PARP-1/2 inhibitors would be beneficial for the discovery of the improved inhibitors. Herein, a mutated PARP-2 catalytic domain, designated as catPARP-2SE, was engineered. It could be expressed in an elevated level and had capability to crystalize at 25 °C, which greatly facilitated obtaining PARP-2 crystals. Consequently, the complex structures of Fluzoparib, Pamiparib, Rucaparib, and Niraparib within PARP-2 were achieved. Taking advantage of these complexed structures, the detailed and quantitative analyses of protein-ligand and intra-protein interactions (αB-αF, αJ-αB, αJ-αF, ASL-αD and ASL-αF interfaces) were conducted with quantum chemistry methods (GFN2-xTB and IGMH). It suggested that the residues adjacent to Asp766 in the HD and ASL domains and the αJ-αF and ASL-αD interfaces were closely related to the selectivity and trapping mechanism. These results would provide some insights for the design and development of novel PARP-1/2 inhibitors with improved pharmacodynamic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2025.108471 | DOI Listing |
Bioorg Chem
June 2025
Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. Electronic address:
The PARP-1/2 inhibitors have been approved for the treatment of cancers by modulating the enzymatic activity and/or the trapping ability for damaged DNA of PARP-1 and/or PARP-2, and the selective PARP-1 inhibitors are now attracting considerable attention with an aim to search for drug candidates with an improved safety. Exploring the structural basis of the selectivity and trapping capability of known PARP-1/2 inhibitors would be beneficial for the discovery of the improved inhibitors. Herein, a mutated PARP-2 catalytic domain, designated as catPARP-2SE, was engineered.
View Article and Find Full Text PDFChemMedChem
April 2025
Institute of Material Medical: Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Materia Medica, synthesis department, No.1 xiannongtan street, 100050, Beijing, CHINA.
Poly (ADP-ribose) polymerases-1/2(PARP-1/2) has been identified as important anti-tumor drug targets, and the development of PARP-1/2 inhibitors featuring novel structures is still a promising strategy for cancer treatments. In this work, a highly potent PARP-1/2 probe with a quinazolinone scaffold was designed and synthesized, showing dissociation constants (Kd) of 2.07 nM and 1.
View Article and Find Full Text PDFCancer Med
February 2025
Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
Background: Venadaparib, a novel poly (ADP-ribose) polymerase (PARP) inhibitor, has demonstrated high PARP-1/2 selectivity over other PARP family members and exhibited strong PARP-trapping activity, effectively inhibiting tumor growth in homologous recombination deficient (HRD) cancer in vitro and in vivo.
Methods: This phase 1, dose-finding study evaluated the safety, tolerability, pharmacokinetics, pharmacodynamics and anticancer efficacy of venadaparib as monotherapy in patients with advanced solid tumors that progressed after standard-of-care therapy. The study employed a conventional 3+3 design, with doses ranging from 2 mg/d to 240 mg/d.
Background: The outcome for pediatric patients with high-grade glioma (HGG) remains poor. Veliparib, a potent oral poly(adenosine diphosphate-ribose) polymerase (PARP) 1/2 inhibitor, enhances the activity of radiotherapy and DNA-damaging chemotherapy.
Methods: We conducted a single-arm, non-randomized phase 2 clinical trial to determine whether treatment with veliparib and radiotherapy, followed by veliparib and temozolomide, improves progression-free survival in pediatric patients with newly diagnosed HGG without H3 K27M or BRAF mutations, compared to patient-level data from historical cohorts with closely matching clinical and molecular features.
Int J Mol Sci
August 2024
Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada.
Poly (ADP-Ribose) Polymerase (PARP) inhibitors have changed the outcomes and therapeutic strategy for several cancer types. As a targeted therapeutic mainly for patients with mutations, PARP inhibitors have commonly been exploited for their capacity to prevent DNA repair. In this review, we discuss the multifaceted roles of PARP-1 and PARP-2 beyond DNA repair, including the impact of PARP-1 on chemokine signalling, immune modulation, and transcriptional regulation of gene expression, particularly in the contexts of angiogenesis and epithelial-to-mesenchymal transition (EMT).
View Article and Find Full Text PDF