98%
921
2 minutes
20
Neural activity at the population level is commonly studied experimentally through measurements of electric brain signals like local field potentials (LFPs), or electroencephalography (EEG) signals. To allow for comparison between observed and simulated neural activity it is therefore important that simulations of neural activity can accurately predict these brain signals. Simulations of neural activity at the population level often rely on point-neuron network models or firing-rate models. While these simplified representations of neural activity are computationally efficient, they lack the explicit spatial information needed for calculating LFP/EEG signals. Different heuristic approaches have been suggested for overcoming this limitation, but the accuracy of these approaches has not fully been assessed. One such heuristic approach, the so-called kernel method, has previously been applied with promising results and has the additional advantage of being well-grounded in the biophysics underlying electric brain signal generation. It is based on calculating rate-to-LFP/EEG kernels for each synaptic pathway in a network model, after which LFP/EEG signals can be obtained directly from population firing rates. This amounts to a massive reduction in the computational effort of calculating brain signals because the brain signals are calculated for each population instead of for each neuron. Here, we investigate how and when the kernel method can be expected to work, and present a theoretical framework for predicting its accuracy. We show that the relative error of the brain signal predictions is a function of the single-cell kernel heterogeneity and the spike-train correlations. Finally, we demonstrate that the kernel method is most accurate for contributions which are also dominating the brain signals: spatially clustered and correlated synaptic input to large populations of pyramidal cells. We thereby further establish the kernel method as a promising approach for calculating electric brain signals from large-scale neural simulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052147 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1012303 | DOI Listing |
Cereb Cortex
August 2025
Section on Functional Imaging Methods & Functional MRI Core Facility, National Institute of Mental Health, 10 Center Drive, Rm 1D80, Bethesda, MD 20892, United States.
Statistical Parametric Mapping (SPM) has been profoundly influential to neuroimaging as it has fostered rigorous, statistically grounded structure for model-based inferences that have led to mechanistic insights about the human brain over the past 30 years. The statistical constructs shared with the world through SPM have been instrumental for deriving meaning from neuroimaging data; however, they require simplifying assumptions which can provide results that, while statistically sound, may not accurately reflect the mechanisms of brain function. A platform that fosters the exploration of the rich and varying neuronal and physiologic underpinnings of the measured signals and their associations to behavior and physiologic measures needs a different set of tools.
View Article and Find Full Text PDFMetab Brain Dis
September 2025
Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, Hubei, 430022, China.
Major depression disorder (MDD) is a mental condition that significantly threatens both physical and psychological health. This study aimed to discern variances in plasma metabolic profiles between MDD sufferers and healthy counterparts. Additionally, we tracked the hospitalization journey of MDD patients to investigate the normalization of metabolic irregularities through conventional treatment in the form of self-control.
View Article and Find Full Text PDFMetab Brain Dis
September 2025
Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Brain ischemia is a major global cause of disability, frequently leading to psychoneurological issues. This study investigates the effects of 4-aminopyridine (4-AP) on anxiety, cognitive impairment, and potential underlying mechanisms in a mouse model of medial prefrontal cortex (mPFC) ischemia. Mice with mPFC ischemia were treated with normal saline (NS) or different doses of 4-AP (250, 500, and 1000 µg/kg) for 14 consecutive days.
View Article and Find Full Text PDFExp Brain Res
September 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.
View Article and Find Full Text PDFPhys Eng Sci Med
September 2025
Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia.
This study introduces a novel optimization framework for cranial three-dimensional rotational angiography (3DRA), combining the development of a brain equivalent in-house phantom with Figure of Merit (FOM) a quantitative evaluation method. The technical contribution involves the development of an in-house phantom constructed using iodine-infused epoxy and lycal resins, validated against clinical Hounsfield Units (HU). A customized head phantom was developed to simulate brain tissue and cranial vasculature for 3DRA optimization.
View Article and Find Full Text PDF