Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metal-assisted chemical etching (MaCE) has emerged as a promising technique for fabricating silicon nanostructures, yet the presence of anomalous isotropic etching poses significant challenges for precise dimensional control. Here, it is demonstrated that catalyst morphology, particularly its aspect ratio, plays a crucial role in determining etching directionality. Through systematic investigation of the initial stages of MaCE, it is revealed that significant undercutting occurs within seconds of etching initiation, persisting across all solution compositions. This phenomenon is quantitatively analyzed using the Degree of Undercutting (DoU) and Degree of Anisotropy (DoA) metrics, establishing that conventional solution chemistry control alone cannot suppress lateral etching. These findings reveal that high-aspect-ratio dendrite catalysts, formed at elevated AgNO concentrations, undergo physical separation during etching, leading to residual catalysts that promote localized isotropic etching. To address this, a thermal treatment approach is developed that effectively transforms these problematic structures into stable, low-aspect-ratio catalysts. A critical transition at 450 °C, where enhanced silver atom mobility coincides with surface defect formation, enables nearly perfect vertical etching. This work not only provides fundamental insights into the relationship between catalyst geometry and etching behavior but also presents a practical solution for achieving precise control over silicon nanostructure fabrication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12272007PMC
http://dx.doi.org/10.1002/adma.202502840DOI Listing

Publication Analysis

Top Keywords

etching
10
metal-assisted chemical
8
chemical etching
8
isotropic etching
8
decoding directional
4
control
4
directional control
4
control metal-assisted
4
etching catalyst
4
catalyst architecture
4

Similar Publications

Single electrons confined to a free neon surface and manipulated through the circuit quantum electrodynamics architecture is a promising novel quantum computing platform. Understanding the exact physical nature of the electron-on-neon (eNe) charge states is important for realizing this platform's potential for quantum technologies. We investigate how resonator trench depth and substrate surface properties influence the formation of eNe charge states and their coupling to microwave resonators.

View Article and Find Full Text PDF

Construction of Hollow Structured Covalent Organic Framework with Chiral Internal Catalytic Sites for Asymmetric Hydrogenation.

Small

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China.

The functionality of covalent organic frameworks (COFs) is usually highly related to their morphologies. Among various morphologies, the hollow-structured COFs have recently attracted intense attention due to their unique properties. Herein, the synthesis of hollow structured COFs are first reported with the chiral internal sites via combining the chiral templating method with the acid etching approach.

View Article and Find Full Text PDF

Wafer-scale integration of monolayer MoS residue-free support layer etching and angular strain suppression.

Nanoscale

September 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.

View Article and Find Full Text PDF

Carbon fiber nanotip electrodes (CFNEs) are crucial for electrochemical recordings of neurotransmission release in confined spaces, such as synapses and intracellular measurements. However, fabricating CFNEs with small surface area to minimize noise remains challenging due to inconsistent tip size control, low reproducibility, and low fabrication success rate. Here, we present a reliable, user-friendly method with high reproducibility and success rate for precise CFNE fabrication using microscopy-guided electrochemical etching of cylindrical carbon fiber microelectrodes in a potassium hydroxide droplet.

View Article and Find Full Text PDF

Polymer-derived ceramics are a versatile class of multifunctional materials synthesized the high-temperature treatment of a preceramic polymer. In this work, we report the synthesis of a vanadium carbide-embedded carbonaceous hybrid by pyrolyzing a modified preceramic polymer incorporating vanadium acetylacetonate in a polysilsesquioxane followed by hydrofluoric acid etching. The structural and microscopic characterisation confirmed the uniform distribution of nanoparticulate vanadium carbide in the matrix.

View Article and Find Full Text PDF