Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
White matter injury is caused by cerebral blood flow disturbances associated with stroke and demyelinating diseases such as multiple sclerosis. Remyelination is induced spontaneously after white matter injury, but progressive multiple sclerosis and white matter stroke are usually characterised by remyelination failure. However, the mechanisms underlying impaired remyelination in lesions caused by demyelination and stroke remain unclear. In the current study, we demonstrated that collagen fibres accumulated in the demyelinated lesions of multiple sclerosis patients (age range 23-80 years) and white matter lesions of stroke patients (age range 80-87 years), suggesting that the accumulation of collagen fibres correlates with remyelination failure in these lesions. To investigate the function of collagen fibres in the white matter lesions, we generated two types of white matter injury in mice. We induced focal demyelination by lysolecithin (LPC) injection and ischemic stroke by endothelin 1 (ET1) injection into the internal capsule. We found that type I collagen fibres were secreted in ET1-induced lesions with impaired white matter regeneration in the chronic phase of disease. We also showed that monocyte-derived macrophages that infiltrated into lesions from the peripheral blood produced type I collagen after white matter injury, and that type I collagen also exacerbated microglial activation, astrogliosis, and axonal injury. Finally, we demonstrated that oligodendrocyte differentiation and remyelination were inhibited in the presence of type I collagen after LPC-induced demyelination. These results suggest that type I collagen secreted by monocyte-derived macrophages inhibited white matter regeneration, and therefore, the modulation of type I collagen metabolism might be a novel therapeutic target for white matter injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11993711 | PMC |
http://dx.doi.org/10.1038/s41419-025-07633-w | DOI Listing |