Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The advancement of intelligent road transport represents a promising direction in the evolution of transportation systems, aimed at improving road safety and reducing traffic accidents. The integration of artificial intelligence, sensors, and machine vision systems enables autonomous vehicles (AVs) to rapidly adapt to changes in the road environment, minimizing human error and significantly reducing collision risks. These technologies provide continuous and highly precise control, including adaptive acceleration, braking, and maneuvering, thereby enhancing overall road safety. Connected vehicles utilizing C-V2X (Cellular Vehicle-to-Everything) communication primarily feature real-time operation, safety, and stability. However, communication flaws, such as signal fading, time delays, packet loss, and malicious network attacks, can affect vehicle-to-vehicle interactions in cooperative intelligent transport systems (C-ITSs). This study explores how C-V2X technology, compared to traditional DSRC, improves communication latency and enhances vehicle communication efficiency. Using SUMO simulations, various traffic scenarios were modeled with different autonomous vehicle penetration rates and communication technologies, focusing on traffic conflict rates, travel time, and communication performance. The results demonstrated that C-V2X reduced latency by over 99% compared to DSRC, facilitating faster communication between vehicles and contributing to a 38% reduction in traffic conflicts at 60% AV penetration. Traffic flow and safety improved with increased AV penetration, particularly in congested conditions. While C-V2X offers substantial benefits, challenges such as data packet loss, communication delays, and security vulnerabilities must be addressed to fully realize its potential. Future advancements in 5G and subsequent wireless communication technologies are expected to further reduce latency and enhance the effectiveness of C-ITSs. This study underscores the potential of C-V2X to enhance collision avoidance, alleviate congestion, and improve traffic management, while also contributing to the development of more reliable and efficient transportation systems. The continued refinement of simulation models and collaboration among stakeholders will be crucial to addressing the challenges in CAV integration and realizing the full benefits of connected transportation systems in smart cities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11990983PMC
http://dx.doi.org/10.3390/s25072132DOI Listing

Publication Analysis

Top Keywords

communication technologies
12
road safety
12
transportation systems
12
communication
10
cooperative intelligent
8
intelligent transport
8
transport systems
8
packet loss
8
c-itss study
8
traffic
7

Similar Publications

Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.

View Article and Find Full Text PDF

In-line multi-wavelength non-destructive pharma quality monitoring with ultrabroadband carbon nanotubes photo-thermoelectric imaging scanners.

Light Sci Appl

September 2025

Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.

While non-destructive in-line monitoring at manufacturing sites is essential for safe distribution cycles of pharmaceuticals, efforts are still insufficient to develop analytical systems for detailed dynamic visualisation of foreign substances and material composition in target pills. Although spectroscopies, expected towards pharma testing, have faced technical challenges in in-line setups for bulky equipment housing, this work demonstrates compact dynamic photo-monitoring systems by selectively extracting informative irradiation-wavelengths from comprehensive optical references of target pills. This work develops a non-destructive in-line dynamic inspection system for pharma agent pills with carbon nanotube (CNT) photo-thermoelectric imagers and the associated ultrabroadband sub-terahertz (THz)-infrared (IR) multi-wavelength monitoring.

View Article and Find Full Text PDF

Purpose: Ensuring that patients undergo examinations with confidence and ease is crucial. This study aims to develop a reliable and valid CT Scan Attitude Scale (CT-SAS) to measure attitudes toward CT scans objectively.

Methods: In Study 1, question items were developed based on preliminary surveys and prior research.

View Article and Find Full Text PDF

Purpose: This study aimed to obtain useful suggestions and findings regarding IT engineers' stressors, their structures, and the process of recognizing stress, which are useful for workplace environmental improvement activities as a primary prevention of mental illness.

Methods: Data were collected through interviews conducted with 15 employees from Information Systems departments and System Integration Service Providers and analyzed qualitatively using the modified grounded theory approach.

Results: The qualitative analysis generated 27 concepts, 13 categories, and five category groups.

View Article and Find Full Text PDF

Precise measurement of motor neuron dysfunction in Drosophila ALS model via climbing assay and leg imaging.

Methods Cell Biol

September 2025

The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, P.R. China; Medical and Health Research Institute, Zhengzhou Research Institute of HIT, Zhengzhou, HA, P.R. China. Electronic address:

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder characterized by progressive degeneration of motor neurons, leading to muscle weakness, paralysis, and death. While there is a plethora of studies focusing on many aspects of ALS, the pathogenesis of this disease is not well understood, and effective treatments are scarce. Drosophila melanogaster is a powerful model organism for studying ALS due to its genetic tractability and its evolutionarily conserved cellular and molecular processes which are also shared between the fly and human.

View Article and Find Full Text PDF