98%
921
2 minutes
20
Background: Genomic selection, typically employing genetic markers from SNP chips, is routine in modern dairy cattle breeding. This study assessed the impact of functional sequence variants on genomic prediction accuracy relative to 50 k SNP chip markers for fat percent, protein percent, milk volume, fat yield, and protein yield in lactating dairy cattle. The functional variants were identified through GWAS, RNA-seq, Histone modification ChIP-seq, ATAC-seq, or were coding variants. The genomic prediction accuracy obtained using each class of functional variants was compared with matched numbers of SNPs randomly selected from the Illumina 50 k SNP chip.
Results: The investigation revealed that variants identified by GWAS or RNA-seq, significantly improved the prediction accuracy across all five traits. Contributions from ChIP-seq, ATAC-seq, and coding variants varied. Some variants identified using ChIP-seq showed marked improvements, while others reduced accuracy in protein yield predictions. Relative to a matched number of 32,595 SNPs from the SNP chip, pooling all the functional variants demonstrated prediction accuracy increases of 1.76% for fat percent, 2.97% for protein percent, 0.51% for milk volume, and 0.26% for fat yield, but with a slight decrease of 0.43% in protein yield.
Conclusion: The study demonstrates that functional variants can improve prediction accuracy relative to equivalent numbers of variants from a generic SNP panel, with percent traits showing more significant gains than yield traits. The main advantage of using functional variants for genomic prediction was achievement of comparable accuracy using a smaller, more selective set of loci. This is particularly evident in trait-specific scenarios. Our findings indicate that specific combinations of functional variants comprising 16 k variants can achieve genomic prediction accuracy comparable to employing a standard panel of twice the size (32.6 k), especially for percent traits. This highlights the potential for the development of more efficient, trait-focused SNP panels utilizing functional variants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987224 | PMC |
http://dx.doi.org/10.1186/s12711-025-00966-2 | DOI Listing |
Mol Biol Rep
September 2025
School of Arts and Sciences, Department of Natural and Applied Sciences, The American University of Iraq-Baghdad, Baghdad, Iraq.
The COVID-19 pandemic, caused by the continuously evolving SARS-CoV-2 virus, has presented persistent global health challenges. As novel variants emerge, many with enhanced transmissibility and immune evasion capabilities, concerns have intensified regarding the efficacy of existing vaccines and therapeutics. This review provides a comprehensive overview of the current landscape of COVID-19 vaccination, including the development and performance of monovalent and bivalent boosters, and examines their effectiveness against newly emerging variants of interest (VOIs) and variants under monitoring (VUMs), such as JN.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Cytogenetics and Molecular Genetics Lab, Pathology Unit, Medical Division (BARC Hospital), Bhabha Atomic Research Centre, Anushakti Nagar, Mumbai, India.
Background: Hearing loss (HL) is one of the most common congenital anomalies and is a complex etiologically diverse condition. Molecular genetic characterization of HL remains challenging owing to the high genetic heterogeneity. This study aimed to screen for potential disease-causing genetic variations in a cohort of Indian patients with congenital bilateral severe-to-profound sensorineural HL.
View Article and Find Full Text PDFFam Cancer
September 2025
School of Social Policy and Practice, University of Pennsylvania, Philadelphia, USA.
Li-Fraumeni syndrome (LFS) is an early-onset cancer syndrome caused by pathogenic germline TP53 variants. Adolescents and young adults (AYAs) with LFS may have challenges navigating new romantic partnerships given the significant effects of LFS on multiple life domains that also affect partners (e.g.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, 305041, Russia.
Background: The chaperoning system, which is responsible for protein homeostasis, plays a significant role in cardiovascular diseases. Among molecular chaperones or heat shock proteins (HSPs), the HSP40 family, the main co-chaperone of HSP70, remains largely underexplored, especially in ischemic heart disease (IHD) risk.
Materials And Results: We genotyped 834 IHD patients and 1,328 healthy controls for three SNPs (rs2034598 and rs7189628 DNAJA2 and rs4926222 DNAJB1) using probe-based real-time PCR.
Adv Mater
September 2025
Department of Engineering, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
A new family of nanostructured ternary intermetallic compounds - named the ZIP phases - is introduced in this work. The ZIP phases exhibit dualistic atomic ordering, i.e.
View Article and Find Full Text PDF