98%
921
2 minutes
20
Prostate cancer (PC) remains a significant health challenge, with androgen receptor (AR) signaling playing a pivotal role in its progression. This study investigates the expression and functional implications of the transient receptor potential melastatin 8 (TRPM8) channel in PC, focusing on its interaction with AR and its impact on oncogenic pathways. We analyzed mRNA expression levels of TRPM8 and AR in PC tissues, revealing that TRPM8 is upregulated in benign and early-stage tumors but significantly downregulated in metastatic samples. This decline correlates with increased AR expression, suggesting a compensatory mechanism that enhances AR-driven tumorigenesis. RNA sequencing and pathway enrichment analyses demonstrated that TRPM8 knockout (KO) prostates exhibited significant alterations in gene expression, particularly in pathways related to extracellular matrix (ECM) remodeling, cell proliferation, and survival signaling. Notably, genes associated with metastasis, such as MMP2 and FAP, were upregulated in TRPM8 KO samples, indicating a potential role for TRPM8 in inhibiting tumor invasion. Furthermore, Gene Set Enrichment Analysis (GSEA) revealed positive enrichment of androgen response, angiogenesis, and epithelial-mesenchymal transition (EMT) pathways in TRPM8 KO prostates, reinforcing the notion that TRPM8 loss creates a pro-tumorigenic environment. Our findings suggest that TRPM8 functions as a molecular brake on PC progression, and its loss may contribute to the development of aggressive disease phenotypes. This study underscores the importance of TRPM8 as a potential therapeutic target and biomarker in PC, warranting further investigation into its role in cancer biology and treatment response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11988096 | PMC |
http://dx.doi.org/10.3390/cells14070501 | DOI Listing |
Int J Biol Macromol
September 2025
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China. Electronic address:
The thermosensitive transient receptor potential (Thermo-TRP) channel proteins comprise TRPA1, TRPV1-V4, and TRPM8. TRP channels are mainly situated on cellular surfaces and react to a range of external factors, including heat, cold, acidity, osmotic pressure, chemical signals, and flavors, as well as intracellular signals such as Ca, Na, and cytokines. The thermo-TRP channels are associated with many physiological signal pathways, with their distinct molecular structure making them promising drug targets for respiratory diseases.
View Article and Find Full Text PDFACS Omega
September 2025
Neuroscience and Ageing Biology Division, CSIR- Central Drug Research Institute (CDRI), Lucknow 226031, India.
The TRPA1 channel has recently emerged as a critical target for pain relief since its antagonists target the beginning of the pain transduction pathway and, thus, are devoid of side effects such as sedation, dizziness, somnolence, or cognitive impairment. Despite this clinical significance, currently, no TRPA1 inhibitors suitable for therapeutic usage exist to target these channels. Since ancient times, natural products have been known to be a rich source of new drugs, useful therapeutic agents, as well as pharmacological tools.
View Article and Find Full Text PDFEur J Pain
October 2025
Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy.
Background: Although robust genetic markers for episodic migraine (EM) have been identified, variants associated with chronic migraine (CM) are still unknown. Given the potential pathophysiologic overlap between EM and CM, we investigated whether six single nucleotide polymorphisms (SNPs), robustly associated with EM susceptibility (LRP1 rs11172113, PRDM16 rs10797381, FHL5 rs7775721, TRPM8 rs10166942, near TSPAN2 rs2078371 and MEF2D rs1925950) also play a role in the risk of developing CM.
Methods: A total of 200 EM and 202 CM participants were prospectively included.
J Biomed Mater Res A
September 2025
Department of Urology, China Rehabilitation Research Center, Beijing Boai Hospital, School of Rehabilitation of Capital Medical University, Beijing, China.
This study investigated the therapeutic effects of a composite small intestinal submucosa decellularized extracellular matrix/hyaluronic acid (HA)-incorporated thermosensitive hydrogel (HA-Gel) on interstitial cystitis (IC) in rats. The HA-Gel was fabricated using rabbit small intestinal submucosa-derived extracellular matrix as a thermosensitive scaffold combined with HA, and an IC rat model was established using the UPK3A65-84 peptide. Rats were divided into five groups: IC group, IC + HA group, IC + Gel group, IC + HA-Gel group, and a non-modeled control group.
View Article and Find Full Text PDFMolecules
August 2025
Department of Medical Biochemistry and Molecular Biology, Medical Faculty, University of Saarland, Campus Homburg, 66421 Homburg, Germany.
The transient receptor potential channels TRPM3 and TRPM8 are cation channels that regulate numerous cellular activities, including thermo- and pain sensation. Stimulation of either TRPM3 or TRPM8 channels induces an intracellular signaling cascade that leads to the activation of stimulus-responsive transcription factors. As part of a search for delayed-response genes that are activated upon TRPM3 or TRPM8 stimulation, we analyzed the gene encoding prostaglandin endoperoxide synthase-2.
View Article and Find Full Text PDF