Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Edible electronics leverages the electronic properties of food-grade materials to create non-toxic technologies that can be either environmentally degraded or digested by the body after the completion of their function. Various edible electronic components have been recently proposed, and their integration into more complex circuits and systems is urgently needed for point-of-care devices. In this context, developing a safe technology for interconnecting edible components is crucial. To this aim, here an edible electrically conductive adhesive made from zein, an edible protein derived from corn, and activated carbon, a food additive, are reported. Different formulations are proposed depending on the ratio between adhesive binder (zein) and electrically conductive filler (activated carbon), evidencing a trade-off between resistivity and adhesion, passing from a 3 × 10 Ω cm resistivity and 2 MPa lap shear adhesion strength to 5 × 10 Ω cm and 0.5 MPa values upon increasing the filler content. As a proof-of-concept, the conductive adhesive is validated in different applications relevant to edible electronics, such as mounting devices on top of innovative edible substrates, interconnecting state-of-the-art edible batteries, and conforming highly adhesive electrodes for fruit monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11935078PMC
http://dx.doi.org/10.1002/smsc.202400373DOI Listing

Publication Analysis

Top Keywords

electrically conductive
12
edible electronics
12
edible
9
conductive adhesive
8
activated carbon
8
corn-based electrically
4
conductive
4
conductive glue
4
glue integration
4
integration edible
4

Similar Publications

Background: This study aimed to investigate the gender-specific associations of skeletal muscle mass and fat mass with non-alcoholic fatty liver disease (NAFLD) and NAFLD-related liver fibrosis in two population-based studies.

Methods: Analyses were based on data from the MEGA (n = 238) and the MEIA study (n = 594) conducted between 2018 and 2023 in Augsburg, Germany. Bioelectrical impedance analysis was used to evaluate relative skeletal muscle mass (rSM) and SM index (SMI) as well as relative fat mass (rFM) and FM index (FMI); furthermore, the fat-to-muscle ratio was built.

View Article and Find Full Text PDF

Early repolarization pattern with oral liquid nicotine.

BMC Cardiovasc Disord

September 2025

Department of Cardiology II (Electrophysiology), University Hospital Münster, Albert-Schweitzer-Campus 1, Münster, 48149, Germany.

While most sudden cardiac deaths are due to structural heart disease or cardiac ischemia, intoxications are rather rare and often unrecognized. Here we present a case of a 35-year-old patient who trickled cumulative 60 mg of the pure nicotine liquid. This led to cardiac arrest and ventricular fibrillation.

View Article and Find Full Text PDF

Study DesignRetrospective cohort study.ObjectivesUnilateral percutaneous kyphoplasty (PKP) is widely used to treat osteoporotic vertebral compression fractures (OVCF) in elderly patients. Cement leakage is the most common complication and may cause serious consequences.

View Article and Find Full Text PDF

Room temperature ionic liquids show great promise as electrolytes in various technological applications, such as energy storage or electrotunable lubrication. These applications are particularly intriguing due to the specific behavior of ionic liquids in nanoconfinement. While previous research has been focused on optimizing the required characteristics through the selection of electrolyte properties, the contribution of confining material properties in these systems has been largely overlooked.

View Article and Find Full Text PDF

Understanding the mechanothermally superior nanotwinned copper: Fabrication procedure, mechanistic models and technological applications.

Adv Colloid Interface Sci

August 2025

Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland. Electronic address:

The rapid evolution of microelectronics requires materials that combine exceptional strength, ductility, and electrical conductivity for joining applications and durable lithium-ion battery anodes. Nanotwinned Cu (nt-Cu) surpasses conventional strengthening approaches, which often compromise ductility and conductivity, by using nanoscale twin boundaries to enhance both mechanical and electrical properties. This review examines the thermomechanical characteristics, fabrication methods, multiscale mechanistic insights, and technological applications of nt-Cu, bridging fundamental science with engineering practice.

View Article and Find Full Text PDF