An unconventional autophagic pathway that inhibits ATP secretion during apoptotic cell death.

Nat Commun

Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mobilisation of Damage-Associated Molecular Patterns (DAMPs) determines the immunogenic properties of apoptosis, but the mechanisms that control DAMP exposure are still unclear. Here we describe an unconventional autophagic pathway that inhibits the release of ATP, a critical DAMP in immunogenic apoptosis, from dying cells. Mitochondrial BAK activated by BH3-only molecules interacts with prohibitins and stomatin-1 through its latch domain, indicating the existence of an interactome specifically assembled by unfolded BAK. This complex engages the WD40 domain of the autophagic effector ATG16L1 to induce unconventional autophagy, and the resulting LC3-positive vesicles contain ATP. Functional interference with the pathway increases ATP release during cell death, reduces ATP levels remaining in the apoptotic bodies, and improves phagocyte activation. These results reveal that an unconventional component of the autophagic burst that often accompanies apoptosis sequesters intracellular ATP to prevent its release, thus favouring the immunosilent nature of apoptotic cell death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986000PMC
http://dx.doi.org/10.1038/s41467-025-58619-3DOI Listing

Publication Analysis

Top Keywords

cell death
12
unconventional autophagic
8
autophagic pathway
8
pathway inhibits
8
apoptotic cell
8
atp
6
unconventional
4
inhibits atp
4
atp secretion
4
secretion apoptotic
4

Similar Publications

New strategies to enhance the efficacy of PD-1/PD-L1 inhibitors in treating microsatellite stable colorectal cancer.

Future Oncol

September 2025

Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China.

Immune checkpoint therapy has demonstrated significant potential in the treatment of various solid tumors. Among these, tumor-induced immunosuppression mediated by programmed cell death protein 1 (PD-1) represents a critical checkpoint. PD-1/programmed death-ligand 1 (PD-L1) inhibitors have been proven to exhibit substantial efficacy in solid tumors such as melanoma and bladder cancer.

View Article and Find Full Text PDF

To investigate the clinicopathological characteristics of non-HPV-related common differentiated penile squamous cell carcinoma, and to observe and analyze the changes of TP53 gene and the expression and significance of TP53, P16, programmed death-ligand 1 (PD-L1), epidermal growth factor receptor (EGFR), androgen receptor (AR), human epidermal growth factor receptor-2 (HER2), and Ki67 proteins in tumor tissue. A total of 65 patients with penile squamous cell carcinoma diagnosed from May 2008 to May 2020 in Yantai Yuhuangding Hospital were retrospectively analyzed, and tumors were confirmed as non-HPV-associated common differentiated squamous cell carcinoma of the penis with negative HPV molecular tests in 55 patients. The relevant clinicopathological data of 55 patients were collected, and the TP53 gene mutation was detected by applying first-generation sequencing technology.

View Article and Find Full Text PDF

Through applying the hybridization technique, new coumarin derivatives (2-17) were prepared with substitution at coumarin C-3 utilizing various heterocyclic derivatives, aiming to afford multi-target carbonic anhydrases (CAs) IX/XII and topoisomerase II (Topo II) inhibitors with potent antiproliferative activity. Eight different cell lines were used to evaluate the growth inhibition percentages (GI%) of cancer cells determined by coumarin analogues 1-17. Analogues 16 and 17 had the most substantial cytotoxic effects, achieving mean GI% of 86.

View Article and Find Full Text PDF

Elesclomol-Copper combination synergistically targets mitochondrial metabolism in cancer stem cells to overcome chemoresistance in pancreatic ductal adenocarcinoma.

Mol Ther

September 2025

Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, partly due to cancer stem cells (CSCs) that drive progression and treatment resistance. We explored the therapeutic potential of inducing cuproptosis, a copper-dependent regulated cell death, in CSC-enriched PDAC models. Using human and murine PDAC models, we evaluated elesclomol, a copper transport enhancer.

View Article and Find Full Text PDF

Pediatric high-grade gliomas remain a significant therapeutic challenge due to their resistance to conventional treatments. The aim of this study was to investigate the cytotoxic potential of solamargine (SM), a natural glycoalkaloid, alone and in combination with the chemotherapeutic agent temozolomide (TMZ) against the human KNS-42 glioma cell line. Solamargine significantly reduced cell viability and proliferation in a concentration-, time-, and hypoxia-dependent manner, while selectively sparing non-tumor human astrocytes (NHA).

View Article and Find Full Text PDF