98%
921
2 minutes
20
In vitro expansion of mesenchymal stem cells is necessary to obtain a higher cell number for clinical applications. However, long-term expansion can produce significant phenotypic changes on these cells, decreasing their therapeutic utility. Therefore, understanding the phenotypic changes that long-term expansion triggers in mesenchymal stem cells will allow for better and more consistent cell therapy results. Here, we evaluate the phenotypic changes caused by continuous passaging through colony forming unit-fibroblast assay, senescence beta-galactosidase staining, morphology examination, secretome analysis, surface marker expression, protein quantification, osteogenic and adipogenic differentiation, and CD4 T lymphocyte immunosuppressive potential. Long-term in vitro culture decreases mesenchymal stem cell osteogenic potential and self-renewal, increases cell size, and senescence, but does not consistently affect adipogenic differentiation. Surface marker expression remains similar for positive and negative markers, while secretory phenotype shifts with decreased p14ARF, MMP-3, p21 Waf1/Cip1,ENA-78, GCP-2, GROα, IL-3, IL-7, IL-8, RANTES, TNFβ, and VEGF-A expression, and increased p53, p16 INK4a, MCP-1, and SDF-1 expression. Immunomodulatory potential remains unchanged. These findings can help better understand the phenotypic changes that mesenchymal stem cells undergo while expanded in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2025.04.002 | DOI Listing |
Clin Cosmet Investig Dermatol
September 2025
Biomedical Engineering Unit, Department of Physiology, College of Medicine, Kuwait University, Safat, Kuwait.
Artificial intelligence (AI) is increasingly reshaping cosmetic surgery by enhancing surgical planning, predicting outcomes, and enabling objective aesthetic assessment. Through narrative synthesis of existing literature and case studies, this perspective paper explores the issue of algorithmic bias in AI-powered aesthetic technologies and presents a framework for culturally sensitive application within cosmetic surgery practices in the Middle East and North Africa (MENA) region. Existing AI systems are predominantly trained on datasets that underrepresent MENA phenotypes, resulting in aesthetic recommendations that disproportionately reflect Western beauty ideals.
View Article and Find Full Text PDFIntroduction: is a spiral-shaped Gram-negative, enterohepatic bacterium classified as a conditional pathogen (pathogenicity group 2). It is known to cause bacteremia and a variety of other diseases in humans. In particular, has been shown to impair intracellular cholesterol metabolism when interacting with macrophages, leading to foam cell formation.
View Article and Find Full Text PDFImmunooncol Technol
September 2025
Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
Background: Breast cancer is a systemic disease, yet the impact of tumor molecular subtype and disease stage on the systemic immune landscape remains poorly understood. In this study, we comprehensively analyzed the systemic immune landscape in a large cohort of breast cancer patients, encompassing all molecular subtypes and disease stages, alongside a control group of healthy donors.
Materials And Methods: Using multi-parameter flow cytometry, we assessed the abundance, phenotype, and activation status of diverse innate and adaptive immune cell populations across peripheral blood samples from 355 breast cancer patients and 65 healthy donors.
Radiat Res
September 2025
Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
Conventional radiotherapy based on X rays is used to treat more than 50% of cancers. Although effective, radiotherapy can damage healthy tissues around the tumor due to the X-ray dose deposition profile, as well as the safety margin needed to compensate for dose uncertainties. A notable side effect is cellular senescence, characterized by the cessation of cell division while maintaining metabolic activity and promoting the secretion of various components, called the senescence-associated secretory phenotype.
View Article and Find Full Text PDFAllergy
September 2025
Department of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK.
Mast cells (MCs) rapidly adapt to the microenvironment due to the plethora of cytokine receptors expressed. Understanding microenvironment-primed immune responses is essential to elucidate the phenotypic/functional changes MCs undergo, and thus understand their contribution to diseases and predict the most effective therapeutic strategies. We exposed primary human MCs to cytokines mimicking a T1/pro-inflammatory (IFNγ), T2/allergic (IL-4 + IL-13), alarmin-rich (IL-33) and pro-fibrotic/pro-tolerogenic (TGFβ) microenvironment.
View Article and Find Full Text PDF