Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We propose a novel Reservoir Computing (RC) based classification method that distinguishes between different chaotic time series. Our method is composed of two steps: (i) we use the reservoir as a feature extracting machine that captures the salient features of time series data; (ii) the readout layer of the reservoir is subsequently fed into a Convolutional Neural Network (CNN) to facilitate classification and recognition. One of the notable advantages is that the readout layer, as obtained by randomly generated empirical hyper-parameters within the RC module, provides sufficient information for the CNN to accomplish the classification tasks effectively. The quality of extracted features by RC is independently evaluated by the root mean square error, which measures how well the training signal may be reconstructed from the input time series. Furthermore, we propose two ways to implement the RC module, namely, a single shallow RC and parallel RC configurations, to further improve the classification accuracy. The important roles of RC in feature extraction are demonstrated by comparing the results when the CNN is provided with either ordinal pattern probability features or unprocessed raw time series directly, both of which perform worse than RC-based method. In addition to CNN, we show that the readout of RC is good for other classification tools as well. The successful classification of electroencephalogram recordings of different brain states suggests that our RC-based classification tools can be used for experimental studies.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0255707DOI Listing

Publication Analysis

Top Keywords

time series
20
chaotic time
8
classification
8
convolutional neural
8
readout layer
8
classification tools
8
series
5
series classification
4
classification reservoir-based
4
reservoir-based convolutional
4

Similar Publications

Unlabelled: Leptomeningeal metastasis (LM) is a severe complication of solid malignancies, including lung adenocarcinoma, characterized by poor prognosis and diagnostic challenges. This study assesses whether curvilinear peri-brainstem hyperintense signals on MRI are a characteristic feature of LM in lung adenocarcinoma patients.

Methods: This retrospective study analyzed data from multiple centers, encompassing lung adenocarcinoma patients with peri-brainstem curvilinear hyperintense signals on MRI between January 2016 and March 2022.

View Article and Find Full Text PDF

Purpose: To study the efficacy and safety of pro re nata regimen of brolucizumab, without loading dose, in treatment-naive patients with neovascular age-related macular degeneration (nAMD).

Case Series: Retrospective, observational study. We included all consecutive patients diagnosed with treatment- naïve nAMD undergoing Brolucizumab in Humanitas eye clinic, Turin, Italy between April 2022 and May 2023.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF

Background: Vulvovaginal Candidiasis (VVC) is a condition commonly caused by . It is the second most common infection of the female genitalia affecting many women worldwide. Studies have identified unhealthy genital care practices to be associated with the infection among women including expectant mothers.

View Article and Find Full Text PDF

Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.

Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.

View Article and Find Full Text PDF