98%
921
2 minutes
20
Efficient management of nitrogen (N) and phosphorus (P) is imperative for sustainable agriculture, resource conservation, and reducing environmental pollution. Despite progress in on-farm practices and urban wastewater treatment in the Chesapeake Bay (CB) watershed, limited attention has been given to nutrient transport, use, and handling between farms and urban environments. This study uses the hierarchical (Cropping system, Animal-crop system, Food system, and Ecosystem) framework to evaluate nutrient management performances within the watershed. We first develop a three-decade, county-level nutrient budget database (1985-2019), then analyze the spatiotemporal patterns of N and P budgets, as well as N and P use efficiencies, within the four hierarchies. Our results indicate a sizable increase in potential N and P losses beyond crop fields (i.e. in the Animal-crop system, Food system, and Ecosystem), surpassing losses from cropland in over 90% of counties. To address these system-wide trade-offs, we estimate the nutrient resources in waste streams beyond croplands, which, if recovered and recycled, could theoretically offset mineral fertilizer inputs in over 60% of counties. Additionally, the growing imbalance in excess N versus P across systems, which increases the N:P ratio of potential losses, could pose an emerging risk to downstream aquatic ecosystems. By utilizing a systematic approach, our novel application of the framework reveals trade-offs and synergies in nutrient management outcomes that transcend agro-environmental and political boundaries, underscores disparities in N and P management, and helps to identify unique opportunities for enhancing holistic nutrient management across systems within the CB watershed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977706 | PMC |
http://dx.doi.org/10.1088/1748-9326/ad786c | DOI Listing |
Food Res Int
November 2025
Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; Interdepartmental Centre for Grapevines and Wine Sciences, University of Turin, Corso Enotria 2/C, 12051 Alba, Italy. Electronic address:
Microorganisms colonizing grapevines possess diverse functional capabilities that influence the health, growth, productivity and, consequently, wine quality. In this study, spatial and temporal dynamics of the microbiome of Vitis vinifera cv. Barbera grapevine were determined by shotgun sequencing.
View Article and Find Full Text PDFEnviron Res
September 2025
Department of Environment and Energy, Sejong University, Seoul 05006, South Korea. Electronic address:
Identifying the sources of sedimentary organic matter (OM) is essential for understanding pollution dynamics and guiding effective management in estuarine environments. This study proposes a novel and transferable source tracking framework that integrates Fourier transform infrared (FTIR) and fluorescence spectroscopy with a principal component analysis-absolute principal component score-multiple linear regression (PCA-APCS-MLR) receptor model to apportion OM sources in surface sediments across four South Korean estuaries with contrasting land use. Five new infrared-based indices (IRIs), developed from diagnostic FTIR absorbance features of water-extractable organic matter (WEOM), were designed to capture source-specific functional group compositions linked to terrestrial, synthetic, and petroleum-derived OM.
View Article and Find Full Text PDFJ Environ Manage
September 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China.
The fragmented ecological environment in the mining ecosystem has a significant impact on the microbial community and affects ecosystem stability. Arbuscular mycorrhizal fungi (AMF) facilitate nutrient exchange and element cycling between soil and plants, which play a crucial role in the functionality and stability of soil ecosystems. However, the mechanism of ecological environment factors influencing AMF community assembly in mining areas is still unclear.
View Article and Find Full Text PDFCurr Obes Rep
September 2025
Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, USA.
Purpose Of The Review: This review aimed to summarize current evidence on the effectiveness of medical nutrition therapy (MNT) in the management of obesity and endometriosis, with a focus on dietary patterns such as the Mediterranean and Ketogenic diets, as well as nutritional supplementation. Additionally, it highlights the central role of the clinical nutritionist in implementing individualized, evidence-based interventions within multidisciplinary care.
Recent Findings: Although the literature reports the existence of an inverse relationship between risk of endometriosis and body mass index, clinical evidence jointly reports that a condition of obesity is associated with greater disease severity.
Environ Monit Assess
September 2025
Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.
View Article and Find Full Text PDF