USP10 stabilizes BAZ1A to drive tumor stemness via an epigenetic mechanism in head and neck squamous cell carcinoma.

Cell Death Dis

Department of Oral and Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institut

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aberrant epigenetic remodeling events occurred in head and neck squamous cell carcinoma (HNSCC) contribute to tumor stemness and chemotherapy resistance, yet little is known. In this study, we identified that ubiquitin-specific peptidase 10 (USP10) is up-regulated in HNSCC tissues, and high USP10 is associated with poor prognosis of patients. Functionally, USP10 serving as an oncogene potentiates the proliferation and metastasis of HNSCC cells in vitro and in vivo. Mechanistically, USP10 physically interacts with, deubiquitinate, and stabilizes BAZ1A proteins. In addition, BAZ1A complexes with SOX2 to drive the enhancer-promoter interaction and facilitate the recruitment of BRD4, thereby activating the expressions of cancer stem cells (CSCs)-related signature. Therefore, we found that USP10 relied on BAZ1A to enhance HNSCC stemness, progression, and chemotherapy resistance. The pharmacology research implicated that BAZ1A-IN-1, one specific BAZ1A inhibitor, could effectively inhibit HNSCC stemness, distal metastasis, and cisplatin resistance. Together, our study revealed a novel USP10/BAZ1A/stemness axis and one significant therapeutic target for USP10-driven HNSCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982335PMC
http://dx.doi.org/10.1038/s41419-025-07462-xDOI Listing

Publication Analysis

Top Keywords

stabilizes baz1a
8
tumor stemness
8
head neck
8
neck squamous
8
squamous cell
8
cell carcinoma
8
chemotherapy resistance
8
resistance study
8
hnscc stemness
8
usp10
6

Similar Publications

USP10 stabilizes BAZ1A to drive tumor stemness via an epigenetic mechanism in head and neck squamous cell carcinoma.

Cell Death Dis

April 2025

Department of Oral and Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institut

Aberrant epigenetic remodeling events occurred in head and neck squamous cell carcinoma (HNSCC) contribute to tumor stemness and chemotherapy resistance, yet little is known. In this study, we identified that ubiquitin-specific peptidase 10 (USP10) is up-regulated in HNSCC tissues, and high USP10 is associated with poor prognosis of patients. Functionally, USP10 serving as an oncogene potentiates the proliferation and metastasis of HNSCC cells in vitro and in vivo.

View Article and Find Full Text PDF

Ionizing radiation induces DNA double strand breaks (DSBs) which can lead to the formation of chromosome rearrangements through error prone repair. In mammalian cells the positional stability of chromatin contributes to the maintenance of genome integrity. DSBs exhibit only a small, submicron scale diffusive mobility, but a slight increase in the mobility of chromatin domains by the induction of DSBs might influence repair fidelity and the formation of translocations.

View Article and Find Full Text PDF

Both hereditary and nonhereditary retinoblastoma (Rb) are commonly initiated by loss of both copies of the retinoblastoma tumor suppressor gene (RB1), while additional genomic changes are required for tumor initiation and progression. Our aim was to determine whether there is genomic heterogeneity between different clinical Rb subtypes. Therefore, 21 Rb tumors from 11 hereditary patients and 10 nonhereditary Rb patients were analyzed using high-resolution single nucleotide polymorphism (SNP) arrays and gene losses and gains were validated with Multiplex Ligation-dependent Probe Amplification.

View Article and Find Full Text PDF

Hormones and vitamins play integral roles in modulating transcriptional activity of members of the nuclear hormone receptor (NR) superfamily. The nuclear receptor corepressor protein (N-CoR) is essential for the transcriptional repression by unliganded NRs. In an attempt to isolate novel components of the hormone signaling pathway, we used a yeast two-hybrid screen and identified human ATP-utilizing chromatin assembly and remodeling factor 1 (hAcf1) as an N-CoR interacting protein.

View Article and Find Full Text PDF