Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fluorescence imaging is crucial for studying biology. Triplet state quenchers (TSQs), especially cyclooctatetraene (COT), can dramatically improve fluorophore performance, particularly when linked intramolecularly so as to enable "self-healing". Leveraging knowledge revealed through investigations of the self-healing mechanism enabled by COT, we computationally screened for cyclic 8π-electron species, and their annulated derivatives, with efficient triplet-triplet energy transfer potential, high photostability, and strong spin-orbit coupling (SOC) between the lowest triplet state to the singlet ground state. Here, we report theory-based analyses of a broad array of candidates that demonstrate various extents of triplet state Baird-aromaticity, indicating self-healing potential. We identify specific candidates with 7-membered ring structures predicted to exhibit favorable enhancements in fluorophore performance spanning the visible spectrum, with several possessing estimated intersystem crossing (ISC) rates up to 4 × 10 times faster than that of COT, the current benchmark for the self-healing strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974263PMC
http://dx.doi.org/10.1039/d5sc01131kDOI Listing

Publication Analysis

Top Keywords

triplet state
12
fluorescence imaging
8
fluorophore performance
8
search improved
4
improved triplet-state
4
triplet-state quenchers
4
quenchers fluorescence
4
imaging computational
4
computational framework
4
framework incorporating
4

Similar Publications

Homogeneous Catalysts for Hydrogenative PHIP Used in Biomedical Applications.

Anal Sens

January 2025

Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 United States.

At present, two competing hyperpolarization (HP) techniques, dissolution dynamic nuclear polarization (DNP) and parahydrogen (para-H) induced polarization (PHIP), can generate sufficiently high liquid state C signal enhancement for in vivo studies. PHIP utilizes the singlet spin state of para-H to create non-equilibrium spin populations. In hydrogenative PHIP, para-H is irreversibly added to unsaturated precursors, typically in the presence of a homogeneous catalyst.

View Article and Find Full Text PDF

Symmetry Breaking Assisted Fast Reverse Intersystem Crossing for Efficient TADF Materials.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.

Reverse intersystem crossing (RISC) process is critical for thermally activated delayed fluorescence (TADF) materials to realize spin-flip of triplet excitons in organic light-emitting diodes (OLEDs), but the RISC processes of most TADF materials are not fast enough, undermining electroluminescence (EL) efficiency stability and operational lifetime. Herein, a symmetry breaking strategy to accelerate RISC processes is proposed. By designing asymmetric electron-withdrawing backbone consisting of benzonitrile and xanthone/thioxanthone groups, two new asymmetric TADF molecules, 4tCzCN-pXT and 4tCzCN-pTXT, with multiple 3,6-di-tert-butylcarbazole donors are successfully developed.

View Article and Find Full Text PDF

The electron-deficient oxidant 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) has recently emerged as a promising visible-light photoredox catalyst. However, its excited-state behavior remains poorly understood. Here, we investigate the ultrafast dynamics of photoexcited DDQ in acetonitrile using transient electronic and infrared absorption spectroscopy, supported by quantum chemical calculations.

View Article and Find Full Text PDF

Spin Qubit Properties of the Boron-Vacancy/Carbon Defect in the Two-Dimensional Hexagonal Boron Nitride.

J Phys Condens Matter

September 2025

Department of Physics, Tuskegee University, 1200 West Montgomery Road, 106 Chappie James, Tuskegee, Alabama, 36088-1920, UNITED STATES.

Spin qubit defects in two-dimensional materials have a number of advantages over those in three-dimensional hosts including simpler technologies for the defect creation and control, as well as qubit accessibility. In this work, we select the VBCB defect in the hexagonal boron nitride (hBN) as a possible optically controllable spin qubit and explain its triplet ground state and neutrality. In this defect a boron vacancy is combined with a carbon dopant substituting the closest boron atom to the vacancy.

View Article and Find Full Text PDF

Effect of Oxygen Exposure on the Triplet Excitation Dynamics of the Monomeric LHCII Complex from Spinach.

J Phys Chem B

September 2025

Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.

Light-harvesting complex IIs (LHCIIs) are the major antenna in higher plants, balancing light capture through photoprotection. While it naturally forms trimers, stress conditions can induce monomerization, altering pigment interactions. Here, we explored how molecular oxygen affects triplet excited-state dynamics in LHCII monomers using time-resolved transient absorption spectroscopy under aerobic and anaerobic conditions.

View Article and Find Full Text PDF