98%
921
2 minutes
20
Angiotensin-converting enzyme 2 (ACE2) is a critical component in the renin-angiotensin system. A Disintegrin And Metalloprotease 17 (ADAM17) is the first identified sheddase for common inflammatory cytokines. Changes in ACE2 expression and its biological activity facilitated by ADAM17 are involved in several diseases including neurodegenerative disorders. Herein, the study investigated an innovative viewpoint on cadmium (Cd)-induced neurotoxicity and explored whether ADAM17/ACE2 interplay mediated the Cd-induced brain injury and neuroinflammation. For this aim, 32 adult male Wistar rats were included and randomly grouped. Eight rats served as a control group and the remaining 24 experimental rats were exposed to Cd (5 mg/kg/day, orally, 21 days); assigned as either Cd-alone (Cd group), received ADAM17 inhibitor [TAPI-1, 10 mg/kg, intraperitoneal] (Cd/TAPI-1 group), or received vitamin E, 100 mg/kg/d, orally (Cd/vit E group). Ultimately, the brains were harvested and exposed to biochemical, histological, and immunohistochemical (IHC) studies for measuring oxidative stress and inflammatory markers, histopathological examination, and for IHC identification of ADAM17, ACE2, and glial fibrillary acidic protein (GFAP). Cd resulted in biochemical disturbances in the inflammatory and oxidative stress markers, degenerative histopathological changes in the cerebral cortex and hippocampus, and enhanced ADAM17 and GFAP expression, meanwhile downregulated ACE2 expression. Vitamin E showed a superior effect in maintaining the oxidative/antioxidant-balanced defense system. However, the biochemical and histological changes in the brain were more effectively alleviated by TAPI-1 administration than by the partial improvement made by vitamin E therapy. These observations suggested that oxidative stress was involved in Cd-mediated upregulation of ADAM17 and ACE2 shedding. It was concluded that oxidative stress, at least in part, resulted in ADAM17-mediated ACE2 cleavage in the current Cd-induced brain damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cyto.2025.156936 | DOI Listing |
J Intern Med
September 2025
Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany.
Background: High-density lipoprotein (HDL) function, rather than its concentration, plays a crucial role in the development of coronary artery disease (CAD). Diminished HDL antioxidant properties, indicated by elevated oxidized HDL (nHDL) and diminished paraoxonase-1 (PON-1) activity, may contribute to vascular dysfunction and inflammation. Data on these associations in CAD patients, including acute coronary syndrome (ACS), remain limited.
View Article and Find Full Text PDFMed Int (Lond)
August 2025
Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, Hunan 410060, P.R. China.
S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.
View Article and Find Full Text PDFMater Today Bio
October 2025
Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, PR China.
Organ transplantation faces critical challenges, including donor shortages, suboptimal preservation, ischemia-reperfusion injury (IRI), and immune rejection. Nanotechnology offers transformative solutions by leveraging precision-engineered materials to enhance graft viability and outcomes. This review highlights nanomaterials' roles in revolutionizing organ preservation.
View Article and Find Full Text PDFFront Nutr
August 2025
Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.
Background: Voghera pepper (VP) extracts were demonstrated to have anti-oxidant ability in several cell types.
Purpose: This study aimed to assess whether VP-extracts could lower oxidative stress and modulate thyroid cancer (TC) cells behavior .
Methods: Extracts were analyzed using the LC-DAD-MS system.
Front Nutr
August 2025
College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
Introduction: Fermented buffalo milk products from South Asia remain an underexplored source of microbial diversity with potential health-promoting benefits. This study investigates the probiotic and industrial suitability of lactic acid bacteria (LAB) and non-LAB isolates from traditional Pakistani dairy, addressing gaps in region-specific probiotic discovery.
Methods: Forty-seven bacterial isolates were obtained from fermented buffalo milk products (yogurt and cheese).