RNF187 Facilitates Proliferation and Migration of Human Spermatogonial Stem Cells Through WDR77 Polyubiquitination.

Cell Prolif

State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The E3 ubiquitin ligase RNF187, also known as RING domain AP1 coactivator-1, is a member of the RING finger family. RNF187 is indispensable for the proliferation and migration of GC-1 cells derived from mouse spermatogonia and GC-2 cells derived from spermatocytes. However, it remains unclear whether RNF187 plays a crucial role in the self-renewal and migration of human spermatogonial stem cells (SSCs). In this study, we observed a positive correlation between RNF187 expression and the proliferation and migration of human SSCs. Through co-immunoprecipitation and mass spectrometry analyses, we identified WD repeat-containing protein 77 (WDR77) as an interacting partner of RNF187. Specifically, RNF187 recognises the K118 site of WDR77 through lysine 48-linked polyubiquitination, subsequently mediating its degradation via the ubiquitin-proteasome system (UPS). Further studies have revealed that decreased expression of WDR77 diminishes the symmetric dimethylation at H4R3 (H4R3me2s) catalysed by its interacting protein, the arginine methyltransferase PRMT5. This, in turn, relieves the transcriptional repression of early growth response protein 1 (EGR1), a positive regulator for human SSC maintenance. In conclusion, this study has unveiled a pivotal role for RNF187 in the proliferation and migration of human SSCs. This may provide a promising strategy for addressing non-obstructive azoospermia (NOA) caused by SSC dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cpr.70042DOI Listing

Publication Analysis

Top Keywords

proliferation migration
16
migration human
16
rnf187
8
human spermatogonial
8
spermatogonial stem
8
stem cells
8
cells derived
8
human sscs
8
migration
5
human
5

Similar Publications

Objective: This study aimed to probe the role of Shenling Baizhu powder (SLBZP) in inhibiting breast cancer (BC) lung metastasis, focusing on epithelial-to-mesenchymal transition (EMT) and ferroptosis.

Methods: BC 4T1 cells were treated with low (3.13 µg/mL) and high (12.

View Article and Find Full Text PDF

Noncoding RNA regulatory networks play crucial roles in human breast cancer. The aim of this study was to establish a network containing multi-type RNAs and RBPs in triple-negative breast cancer (TNBC). Differential expression analyses of lncRNAs, miRNAs, and genes were performed using the GEO2R tool.

View Article and Find Full Text PDF

The short lifespan of polymorphonuclear neutrophils (PMNs) in vitro poses challenges, as their limited viability restricts functional assays and experimental manipulations. The HL-60 cell line serves as a valuable model for neutrophil-like differentiation, yet the functional relevance of ATRA- and DMSO-induced differentiation remains incompletely understood. In the present study, we aimed to characterize the differentiation potential of all-trans retinoic acid (ATRA) and dimethyl sulfoxide (DMSO) on HL-60 cells and compare their functionality with primary PMNs.

View Article and Find Full Text PDF

Regulation of Inflammatory Lung Injury by Transforming Growth Factors.

Am J Physiol Lung Cell Mol Physiol

September 2025

Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina, USA.

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are inflammatory conditions with substantial rates of morbidity and mortality, but no effective treatments. The lack of effective treatments and unacceptably high mortality rates for ARDS are partly due to an incomplete understanding of the mechanisms that control ALI/ARDS and subsequent vascular repair. Transforming growth factors (TGFs) are a class of growth factors that regulate the vascular response to inflammation, including migration, proliferation, and differentiation of cells comprising the lung vasculature.

View Article and Find Full Text PDF

The journal retracts the article titled "Regulation of Long Non-Coding RNA-Dreh Involved in Proliferation and Migration of Hepatic Progenitor Cells during Liver Regeneration in Rats" [...

View Article and Find Full Text PDF