Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The bilateral supramarginal gyri (SMGs) have been implicated in sensorimotor control of speech production, yet their precise roles and interhemispheric interactions are poorly understood. This event-related potential study employed dual-site continuous theta burst stimulation (c-TBS) over the bilateral SMGs simultaneously to investigate their functional dynamics in vocal motor control. Following unilateral and bilateral c-TBS over the SMG as well as sham stimulation, participants vocalized the vowel sounds while exposed to unexpected pitch perturbations in auditory feedback. Unilateral real c-TBS paired with contralateral sham stimulation led to reduced vocal compensation magnitudes and latencies and decreased P2 responses compared to bilateral sham stimulation, with no differences between left and right SMG stimulation. Source localization revealed that decreased P2 responses following left SMG stimulation localized to left-lateralized dorsolateral prefrontal cortex, supplementary motor area, SMG, middle temporal gyrus, and temporo-parietal junction, whereas such decreases following right SMG stimulation involved left-lateralized primary motor cortex, premotor cortex, and middle temporal gyrus. These findings suggest that both SMGs are causally involved in vocal feedback control through distinct but interconnected networks. Surprisingly, dual-site c-TBS over the bilateral SMG did not alter vocal compensation or cortical activity, suggesting an interhemispheric balancing mechanism for fine-tuning vocal production. Our results offer novel insights into the bihemispheric coordination of auditory-vocal integration, highlighting potential treatment for speech disorders by modulating interhemispheric interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/psyp.70054 | DOI Listing |