98%
921
2 minutes
20
Background: Acute myeloid leukemia (AML) is a highly aggressive cancer with a 5-year survival rate of less than 35%. It is characterized by significant drug resistance and abnormal energy metabolism. Mitochondrial dynamics and metabolism are crucial for AML cell survival. Mitochondrial fusion protein optic atrophy (OPA)1 is upregulated in AML patients with adverse mutations and correlates with poor prognosis.
Method: This study investigated targeting OPA1 with TMQ0153, a tetrahydrobenzimidazole derivative, to disrupt mitochondrial metabolism and dynamics as a novel therapeutic approach to overcome treatment resistance. Effects of TMQ0153 treatment on OPA1 and mitofusin (MFN)2 protein levels, mitochondrial morphology, and function in AML cells. In this study, we examined reactive oxygen species (ROS) production, oxidative phosphorylation (OXPHOS) inhibition, mitochondrial membrane potential (MMP) depolarization, and apoptosis. Additionally, metabolic profiling was conducted to analyze changes in metabolic pathways.
Results: TMQ0153 treatment significantly reduced OPA1 and mitofusin (MFN)2 protein levels and disrupted the mitochondrial morphology and function in AML cells. This increases ROS production and inhibits OXPHOS, MMP depolarization, and caspase-dependent apoptosis. Metabolic reprogramming was observed, shifting from mitochondrial respiration to glycolysis and impaired respiratory chain activity. Profiling revealed reduced overall metabolism along with changes in the glutathione (GSH)/oxidized glutathione (GSSG) and NAD⁺/NADH redox ratios. TMQ0153 treatment reduces tumor volume and weight in MV4-11 xenografts in vivo. Combination therapies with TMQ0153 and other AML drugs significantly reduced the leukemic burden and prolonged survival in NOD scid gamma (NSG) mice xenografted with U937-luc and MOLM-14-luc cells.
Conclusion: TMQ0153 targets mitochondrial dynamics by inhibiting OPA1, inducing metabolic reprogramming, and triggering apoptosis in AML cells. It enhances the efficacy of existing AML therapies and provides a promising combination treatment approach that exploits mitochondrial vulnerability and metabolic reprogramming to improve treatment outcomes in AML.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974110 | PMC |
http://dx.doi.org/10.1186/s13046-025-03372-0 | DOI Listing |
J Biomed Sci
September 2025
Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.
View Article and Find Full Text PDFJ Immunother Cancer
September 2025
Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
Prostate cancer (PC) is notoriously known for exhibiting an immunologically cold phenotype in the tumor immune microenvironment (TIME), leading to the need for interventions to enhance immunotherapy efficacy. Recent findings by Zhao in the identified stromal monoamine oxidase A (MAOA), a key enzyme that degrades monoamine neurotransmitters and plays a role in the neuroendocrine system, as a critical regulator of the immune response to PC. Altering MAOA levels in myofibroblastic cancer-associated fibroblasts, either genetically or pharmacologically, can reprogram PC's TIME to modulate CD8 T cell-mediated cytotoxicity through the WNT5A-Ca²-NFATC1 signaling axis, highlighting the stromal influences on CD8 T cell cytotoxic activity within the TIME.
View Article and Find Full Text PDFCell Signal
September 2025
Department of Gastroenterology, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China; Guangxi Key Labora
Intestinal dysmotility is a major complication that significantly impacts the prognosis of acute pancreatitis (AP). The neuronal nitric oxide synthase (nNOS) -expressing neurons within the enteric nervous system promote intestinal relaxation via the release of nitric oxide (NO). As the rate-limiting enzyme of NO synthesis, nNOS directly regulates NO production, thereby modulating intestinal motility.
View Article and Find Full Text PDFBioresour Technol
September 2025
School of Environment, Northeast Normal University, Changchun 130117, PR China.
Heavy metals such as Cu are widely prevalent in wastewater (typically 0.04-157.4 mM in typical treatment systems), threatening microbial communities critical for pollutant removal.
View Article and Find Full Text PDFNeurochem Int
September 2025
Department of Neurobiology, College of Basic Medicine, Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University, Shanghai 200433, China. Electronic address:
Traditionally, oligodendrocyte precursor cells (OPCs) were primarily regarded for their differentiation potential to mature oligodendrocytes that ensheath central nervous system (CNS) axons through myelin formation. Recent breakthroughs in single-cell sequencing and in vivo imaging technologies have revolutionized our understanding, revealing that OPCs engage in extensive dynamic interactions with diverse CNS cell populations during neurodevelopment, tissue homeostasis maintenance, and pathological microenvironment remodeling. Notably, while OPCs exhibit relatively conserved phenotypic signatures, their functional plasticity within heterogeneous microenvironments demonstrates significant spatial specificity and disease-context dependence.
View Article and Find Full Text PDF