Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Golgin proteins have long been suspected to be organizers of the Golgi stack. Using three-dimensional super-resolution microscopy, we comprehensively localize the human golgin family at the rim of the Golgi apparatus at 10-20 nm resolution . Unexpectedly, we find that the golgins are precisely organized into a tetraplex with four discrete layers, each containing a specific set of rim golgins. We observe no golgins inside the stack between its membrane-bound cisternae. Biochemically characterizing most of the golgins as isolated proteins, we find that they form anti-parallel dimers and further self-assemble into bands of multi-micron-long filaments. Based on our findings, we propose an "outside-in" physical model, the Golgin Organizer Hypothesis, in which the Golgi stack of cisternae and its overall ribbon morphology directly result from bending circumferential bands of rim golgin filaments onto a membrane surface, explaining stack formation without the need for special "stacking proteins."
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974933 | PMC |
http://dx.doi.org/10.1101/2025.03.27.645134 | DOI Listing |