A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Arbuscular Mycorrhizal Fungi Promote Nodulation and N Fixation in Soybean by Specific Root Exudates. | LitMetric

Arbuscular Mycorrhizal Fungi Promote Nodulation and N Fixation in Soybean by Specific Root Exudates.

Plant Cell Environ

Root Biology Centre, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Legume plants commonly associate with both arbuscular mycorrhizal (AM) fungi and rhizobia and thus enhance the acquisition of phosphorus (P) and nitrogen (N) nutrition. Inoculation with AM fungi can promote nodulation and N fixation of legume plants; however, the underlying mechanisms remain poorly understood. Here, root exudates collected from AM-colonised soybean plants showed greater accumulation of the specific flavonoids (daidzein and genistein) and phenolic acids (benzoic acid and p-Hydroxybenzoic acid), and significantly promoted nodulation. Furthermore, the exudates from AM-colonised roots and the derived specific flavonoids and phenolic acids effectively increased rhizobial growth, chemotaxis, biofilm formation. Addition of the specific synthetic root exudates enhanced nodulation and N fixation, and expression of the core nodulation genes in soybean. Overexpression of a phenylalanine ammonia-lyase gene, GmPAL2.4 markedly upregulated the expression of the genes related to the biosynthesis of daidzein, genistein, benzoic acid, and p-Hydroxybenzoic acid, and increased accumulation of these specific flavonoids and phenolic acids in the transgenic plants, thus enhancing nodulation and N fixation. In summary, we demonstrated a crucial role of specific flavonoids and phenolic acids induced by AM symbiosis in promoting rhizobium-host symbiosis. This offers a pathway for improving symbiotic efficiency through the use of specific synthetic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.15529DOI Listing

Publication Analysis

Top Keywords

nodulation fixation
16
specific flavonoids
16
phenolic acids
16
root exudates
12
flavonoids phenolic
12
arbuscular mycorrhizal
8
mycorrhizal fungi
8
fungi promote
8
promote nodulation
8
legume plants
8

Similar Publications