98%
921
2 minutes
20
Wide-bandgap perovskites based on mixed formamidinium-cesium cation and iodide-bromide halide are promising materials in the top cells that are well-matched with crystalline silicon bottom cells to construct efficient tandem photovoltaics. Nevertheless, mixed cation-halide perovskite films with submicron film thickness suffer from poor crystallinity with inhomogeneous and undesirable phases, owing to the presence of multiple pathways of crystal nucleation and phase transition. Herein, we propose a synergistic solvent and composition engineering (SSCE) strategy to regulate the solvated phases and manipulate the transition pathways simultaneously. The resultant mixed cation-halide perovskite film shows optimizing crystallization and desired phase structure with suppressed nonradiative recombination and improved phase stability under aging stresses. Consequently, the SSCE strategy enables the tandem cells based on industrially ultrathin silicon wafers (120 µm) to achieve a certified stabilized power conversion efficiency of 31.0%. Those encapsulated devices maintain 90% of their initial performance after 1200 h continuous operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202424809 | DOI Listing |
Nanomicro Lett
September 2025
Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.
View Article and Find Full Text PDFAdv Pharm Bull
July 2025
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
Lipid nanocapsules (LNCs) are an emerging nanocarrier platform for cancer therapy as they can co-deliver multiple drugs, promote synergistic action, and provide targeted drug delivery. The phase inversion temperature (PIT) process is most used for LNC formulation, which has the advantage of process simplicity, thermodynamic stability, and the employment of non-toxic solvents without requiring high energy input. Surface functionalization with targeting ligands like folic acid and peptides increases tumor specificity and reduces off-target toxicity.
View Article and Find Full Text PDFJ Biomol Struct Dyn
September 2025
Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
A thermostable paraoxonase (S3wahi-PON) from sp. strain S3wahi was recently characterised and shown to possess stability across a broad temperature range. This study expands upon the initial biochemical characterisation of S3wahi-PON by investigating the structural determinants and conformational adaptability that contribute to its thermostability, using an integrated approach that combines biophysical techniques and molecular dynamics (MD) simulations across a temperature range of 10 °C to 90 °C.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China.
Radical coupling reactions have been widely used in the synthesis of complex organic molecules, materials science, and drug research. However, restricted conditions or special catalysts are required to overcome the energy barrier and trigger the coupling reaction efficiently. In this study, we provide experimental evidence that the C─N radical coupling reactions can be significantly accelerated by an oriented external electric field (OEEF) under synchronous UV irradiation without a catalyst.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China. Electronic address:
Conductive hydrogels have emerged as promising materials for flexible wearable electronics; however, their facile fabrication remains challenging. This study presents an antifreeze, antibacterial, and conductive hydrogel constructed from biomacromolecules sodium carboxymethylcellulose (CMCNa) and polyvinyl alcohol (PVA). The hydrogel was synthesized via a simple one-pot method in an ethylene glycol/water (EG/H₂O) binary solvent system, incorporating lithium chloride (LiCl) and clove essential oil (CEO), followed by a single freeze-thaw cycle.
View Article and Find Full Text PDF