Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Heart failure (HF) impacts nearly 6 million individuals in the U.S., with a projected 46% increase by 2030, is creating significant healthcare burdens. Predictive models, particularly machine learning (ML)-based models, offer promising solutions to identify patients at greater risk of adverse outcomes, such as mortality and hospital readmission. This review aims to assess the effectiveness of ML models in predicting HF-related outcomes, with a focus on their potential to improve patient care and clinical decision-making. We aim to assess how effectively machine learning models predict mortality and readmission in heart failure patients to improve clinical outcomes.

Method: The study followed PRISMA 2020 guidelines and was registered in the PROSPERO database (CRD42023481167). We conducted a systematic search in PubMed, Scopus, and Web of Science databases using specific keywords related to heart failure, machine learning, mortality and readmission. Extracted data focused on study characteristics, machine learning details, and outcomes, with AUC or c-index used as the primary outcomes for pooling analysis. The PROBAST tool was used to assess bias risk, evaluating models based on participants, predictors, outcomes, and statistical analysis. The meta-analysis pooled AUCs for different machine learning models predicting mortality and readmission. Prediction accuracy data was categorized by timeframes, with high heterogeneity determined by an I² value above 50%, leading to a random-effects model when applicable. Publication bias was assessed using Egger's and Begg's tests, with a p-value below 0.05 considered significant RESULT: A total of 4,505 studies were identified, and after screening, 64 were included in the final analysis, covering 943,941 patients. Of these, 40 studies focused on mortality, 17 on readmission, and 7 on both outcomes. In total, 346 machine learning models were evaluated, with the most common algorithms being random forest, logistic regression, and gradient boosting. The neural network model achieved the highest overall AUC for mortality prediction (0.808), while the support vector machine performed best for readmission prediction (AUC 0.733). The analysis revealed a significant risk of bias, primarily due to reliance on retrospective data and inadequate sample size justification.

Conclusion: In conclusion, this review emphasizes the strong potential of ML models in predicting HF readmission and mortality. ML algorithms show promise in improving prognostic accuracy and enabling personalized patient care. However, challenges like model interpretability, generalizability, and clinical integration persist. Overcoming these requires refined ML techniques and a robust regulatory framework to enhance HF outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974104PMC
http://dx.doi.org/10.1186/s12872-025-04700-0DOI Listing

Publication Analysis

Top Keywords

machine learning
28
mortality readmission
20
heart failure
16
models predicting
12
learning models
12
mortality
8
readmission
8
models
8
patient care
8
readmission prediction
8

Similar Publications

Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.

View Article and Find Full Text PDF

Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.

View Article and Find Full Text PDF

Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.

View Article and Find Full Text PDF

This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.

View Article and Find Full Text PDF