Dual-branch convolutional neural network with attention modules for LIBS-NIRS data fusion in cement composition quantification.

Anal Chim Acta

State Key Lab of Power Systems, Department of Energy and Power Engineering, Institute for Carbon Neutrality, International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, China; Shanxi Research Institute for Clean Energy, Tsinghua University, Shanxi, 030

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Cement composition, including key oxides such as CaO, SiO, AlO, and FeO, plays a critical role in determining cement's strength and durability. Real-time monitoring of these components during cement production is essential for ensuring optimal raw material ratios. Spectroscopic techniques, such as Laser Induced Breakdown Spectroscopy (LIBS) and Near Infrared Spectroscopy (NIRS), offer significant potential for rapid and non-destructive cement analysis, but their individual limitations, such as matrix effects in LIBS and spectral overlap in NIRS, necessitate an integrated method to achieve accurate and stable results.

Results: In this study, we propose a novel fusion method based on a dual-branch convolutional neural network with an attention module (DBAM-CNN) to synergize LIBS and NIRS data for enhanced cement component quantification. The dual-branch CNN structure enables feature extraction of atomic and molecular information from LIBS and NIRS data, respectively, optimizing the global task of improving quantitative analysis by capturing complementary information from both spectroscopic techniques. These features are then fused, and spatial and channel attention modules are used to refine the feature weights, enabling the model to effectively capture spectral fingerprint information. Experimental results show that the DBAM-CNN outperforms both existing fusion strategies and single technologies, demonstrating exceptional performance in real-time, high-precision cement composition analysis. SHAP analysis further reveals that the method highlights key features in LIBS and NIRS, leading to enhanced quantitative outcomes.

Significance: The proposed DBAM-CNN method significantly enhances cement composition analysis by effectively integrating complementary information from LIBS and NIRS. By addressing issues such as information redundancy and feature loss that are common in existing fusion strategies, this approach offers a more reliable and efficient solution for real-time, high-precision monitoring in cement production. It represents an advancement in spectroscopic data fusion techniques, paving the way for improved cement quality control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2025.343899DOI Listing

Publication Analysis

Top Keywords

cement composition
16
libs nirs
16
cement
9
dual-branch convolutional
8
convolutional neural
8
neural network
8
network attention
8
attention modules
8
data fusion
8
cement production
8

Similar Publications

Enhancing bonding and durability of polyaryletherketone (PAEK) restorations with nonthermal plasma activation and monomer-based priming.

J Prosthet Dent

September 2025

Associate Professor, School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, ROC. Electronic address:

Statement Of Problem: While valued for their durability in dental prosthetics, polyaryletherketone (PAEK) materials, known for their chemical inertness and low surface energy, pose significant challenges in achieving durable adhesion to resin cements, a critical factor for the long-term success of dental restorations.

Purpose: This study evaluates the novel application of a methyl methacrylate-urethane dimethacrylate (MMA-UDMA) bonding primer following handheld nonthermal plasma (HNP) treatment to enhance the bonding performance and aging durability of PAEK materials with varying microfiller compositions, addressing the persistent challenge of achieving long-term adhesion in dental restorations.

Material And Methods: Three PAEK types, ceramic-filled polyetheretherketone (PEEK), titanium dioxide-filled polyetherketoneketone (PEKK), and PEEK with disk shape (Ø10×2.

View Article and Find Full Text PDF

This study assessed the effect of saliva exposure on roughness (Ra) and Vickers hardness (VHN) of two direct restorative materials, enamel, and dentin adjacent to the restorations. Enamel and dentin cavities in molars (n = 10) were restored with a) bulk-fill resin composite (Tetric N-Flow Bulk Fill, BF) with the application of a universal adhesive (Tetric N-Bond Universal) and b) alkasite restorative material (Cention N, CN) with and without the application of a universal adhesive. After 24 h (baseline), surface roughness and hardness of the restorative material and dental tissues were assessed at 100 μm from the tooth/restoration interface.

View Article and Find Full Text PDF

This study investigates light transmission through five types of computer-aided design/computer-aided manufacturing (CAD/CAM) lithium disilicate ceramics, varying in thickness (0.50, 1.00, and 1.

View Article and Find Full Text PDF

Water resistance and hydration mechanism of phosphogypsum cemented paste backfill under composite curing agent modification.

Environ Res

September 2025

School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Safe and Green Mining of Metal Mines with Cemented Paste Backfill, National Mine Safety Administration, University of Science and Technology Beijing, Beijing 100083, Chi

Cemented paste backfill has made outstanding contributions to the large-scale consumption of phosphogypsum (PG), but poor water resistance significantly weakens the mechanical strength, promotes the leaching of total soluble phosphate (TP) and fluoride ions (F), and reduces its attractiveness in mine engineering. This research synthesized a curing agent (CA) using sodium methylsilicate, sodium silicate, and polyaluminum chloride (PAC). PG produced from Deyang Haohua Qingping Phosphate Mine Co.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate the inherent and after cyclic loading fracture strength of implant-supported cantilevered fixed prostheses fabricated from recently introduced additively manufactured (AM) and subtractively manufactured (SM) materials, considering variations in prosthesis height.

Materials And Methods: Three cylinder-shaped master files (20 mm long and 11 mm wide) with varying heights (7, 11, and 15 mm) and a titanium-base (Ti-base) abutment space were designed. These designs were used to fabricate a total of 144 specimens with two AM resins indicated for definitive use (Crowntec; AM-CT and Flexcera Smile Ultra+; AM-FS), one high-impact polymer composite (breCAM.

View Article and Find Full Text PDF