98%
921
2 minutes
20
Background: Cement composition, including key oxides such as CaO, SiO, AlO, and FeO, plays a critical role in determining cement's strength and durability. Real-time monitoring of these components during cement production is essential for ensuring optimal raw material ratios. Spectroscopic techniques, such as Laser Induced Breakdown Spectroscopy (LIBS) and Near Infrared Spectroscopy (NIRS), offer significant potential for rapid and non-destructive cement analysis, but their individual limitations, such as matrix effects in LIBS and spectral overlap in NIRS, necessitate an integrated method to achieve accurate and stable results.
Results: In this study, we propose a novel fusion method based on a dual-branch convolutional neural network with an attention module (DBAM-CNN) to synergize LIBS and NIRS data for enhanced cement component quantification. The dual-branch CNN structure enables feature extraction of atomic and molecular information from LIBS and NIRS data, respectively, optimizing the global task of improving quantitative analysis by capturing complementary information from both spectroscopic techniques. These features are then fused, and spatial and channel attention modules are used to refine the feature weights, enabling the model to effectively capture spectral fingerprint information. Experimental results show that the DBAM-CNN outperforms both existing fusion strategies and single technologies, demonstrating exceptional performance in real-time, high-precision cement composition analysis. SHAP analysis further reveals that the method highlights key features in LIBS and NIRS, leading to enhanced quantitative outcomes.
Significance: The proposed DBAM-CNN method significantly enhances cement composition analysis by effectively integrating complementary information from LIBS and NIRS. By addressing issues such as information redundancy and feature loss that are common in existing fusion strategies, this approach offers a more reliable and efficient solution for real-time, high-precision monitoring in cement production. It represents an advancement in spectroscopic data fusion techniques, paving the way for improved cement quality control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2025.343899 | DOI Listing |
J Prosthet Dent
September 2025
Associate Professor, School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, ROC. Electronic address:
Statement Of Problem: While valued for their durability in dental prosthetics, polyaryletherketone (PAEK) materials, known for their chemical inertness and low surface energy, pose significant challenges in achieving durable adhesion to resin cements, a critical factor for the long-term success of dental restorations.
Purpose: This study evaluates the novel application of a methyl methacrylate-urethane dimethacrylate (MMA-UDMA) bonding primer following handheld nonthermal plasma (HNP) treatment to enhance the bonding performance and aging durability of PAEK materials with varying microfiller compositions, addressing the persistent challenge of achieving long-term adhesion in dental restorations.
Material And Methods: Three PAEK types, ceramic-filled polyetheretherketone (PEEK), titanium dioxide-filled polyetherketoneketone (PEKK), and PEEK with disk shape (Ø10×2.
Braz Oral Res
September 2025
Universidade Positivo, School of Health Sciences, Graduate Program in Dentistry, Curitiba, PR, Brazil.
This study assessed the effect of saliva exposure on roughness (Ra) and Vickers hardness (VHN) of two direct restorative materials, enamel, and dentin adjacent to the restorations. Enamel and dentin cavities in molars (n = 10) were restored with a) bulk-fill resin composite (Tetric N-Flow Bulk Fill, BF) with the application of a universal adhesive (Tetric N-Bond Universal) and b) alkasite restorative material (Cention N, CN) with and without the application of a universal adhesive. After 24 h (baseline), surface roughness and hardness of the restorative material and dental tissues were assessed at 100 μm from the tooth/restoration interface.
View Article and Find Full Text PDFInt J Dent
August 2025
Department of Prosthodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa City 52242, Iowa, USA.
This study investigates light transmission through five types of computer-aided design/computer-aided manufacturing (CAD/CAM) lithium disilicate ceramics, varying in thickness (0.50, 1.00, and 1.
View Article and Find Full Text PDFEnviron Res
September 2025
School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Safe and Green Mining of Metal Mines with Cemented Paste Backfill, National Mine Safety Administration, University of Science and Technology Beijing, Beijing 100083, Chi
Cemented paste backfill has made outstanding contributions to the large-scale consumption of phosphogypsum (PG), but poor water resistance significantly weakens the mechanical strength, promotes the leaching of total soluble phosphate (TP) and fluoride ions (F), and reduces its attractiveness in mine engineering. This research synthesized a curing agent (CA) using sodium methylsilicate, sodium silicate, and polyaluminum chloride (PAC). PG produced from Deyang Haohua Qingping Phosphate Mine Co.
View Article and Find Full Text PDFJ Prosthodont
September 2025
Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
Purpose: This study aimed to evaluate the inherent and after cyclic loading fracture strength of implant-supported cantilevered fixed prostheses fabricated from recently introduced additively manufactured (AM) and subtractively manufactured (SM) materials, considering variations in prosthesis height.
Materials And Methods: Three cylinder-shaped master files (20 mm long and 11 mm wide) with varying heights (7, 11, and 15 mm) and a titanium-base (Ti-base) abutment space were designed. These designs were used to fabricate a total of 144 specimens with two AM resins indicated for definitive use (Crowntec; AM-CT and Flexcera Smile Ultra+; AM-FS), one high-impact polymer composite (breCAM.