Identification of endocrine disrupting chemicals targeting NTD-related hub genes during pregnancy via in silico analysis.

Reprod Toxicol

Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 998 Aiying Street, Harbin, Heilongjiang 150023, China. Electronic address:

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neural tube defects (NTDs) represent severe congenital malformations of the central nervous system with multifactorial etiology, involving intricate gene-environment interactions that remain incompletely characterized. Endocrine disrupting chemicals (EDCs) are exogenous substances with hormone-disrupting properties that are ubiquitous in our surroundings. These chemicals pose a significant threat to human health, contributing to a range of diseases. Pregnant women are particularly vulnerable to the effects of EDCs, as these substances can traverse the placental barrier and impact the development of both the placenta and fetus. This study utilized placental and fetal transcriptome data to identify hub genes associated with NTDs during pregnancy. By leveraging the Comparative Toxicogenomics Database (CTD), we predicted the EDCs targeting these hub genes and performed molecular docking to assess their interactions. Our findings revealed four hub genes (CTSC, FCER1G, ITGB2, and LYVE1) in NTDs, with 72 EDCs identified as their targets. Molecular docking demonstrated that atrazine, bisphenol A (BPA) and diuron exhibited stable affinity with the proteins encoded by hub genes. These findings provide new insights into the environmental endocrine disruptors that affect the development of NTDs during pregnancy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.reprotox.2025.108904DOI Listing

Publication Analysis

Top Keywords

hub genes
20
endocrine disrupting
8
disrupting chemicals
8
ntds pregnancy
8
molecular docking
8
hub
5
genes
5
identification endocrine
4
chemicals targeting
4
targeting ntd-related
4

Similar Publications

Background: Burn injuries trigger complex immune responses and gene expression changes, impacting wound healing and systemic inflammation. Understanding these changes is crucial for identifying biomarkers and therapeutic targets.

Methods: We analyzed two GEO datasets (wound tissue (GSE8056) and blood (GSE37069)) to identify differentially expressed genes (DEGs) in burn injury samples versus controls.

View Article and Find Full Text PDF

Osteoporosis is a progressive bone disease characterized by reduced bone density and deterioration of bone microarchitecture, predominantly affecting the elderly population. The ongoing COVID-19 pandemic has introduced additional challenges in osteoporosis management, potentially due to systemic inflammation and direct viral impacts on bone metabolism. This study aims to identify common differentially expressed genes (DEGs) and key molecular pathways shared between osteoporosis and COVID-19, with the goal of uncovering potential therapeutic targets through bioinformatics analysis.

View Article and Find Full Text PDF

Background: Ischemic stroke (IS), the leading stroke subtype (∼87%), arises from vascular occlusions, triggering brain necrosis through ischemia-reperfusion injury. Ferroptosis, an iron-driven cell death via Fe-mediated lipid peroxidation, is implicated in IS pathology. This study demonstrates that enoyl-coA hydrolase 1 (ECH1) may serve as a peripheral biomarker and therapeutic target for IS based on ferroptosis signaling.

View Article and Find Full Text PDF

Background: Acute and long-term mental health disorders correlate with coronavirus disease 2019 (COVID-19). The underlying mechanisms responsible for the coexistence of COVID-19 and depression remain unclear, and more research is needed to find hub genes and effective therapies. The main objective of this study was to evaluate gene-expression profiles and, identify key genes, and discovery potential therapeutic agents for co-occurrence in COVID-19 and major depressive disorder (MDD).

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is common and deadly, often leading to metastasis, challenging treatment, and poor outcomes. Understanding its molecular basis is crucial for developing effective therapies.

Aims: This study aimed to investigate the role of Myosin Heavy Chain 11 (MYH11) in CRC progression, especially its effects on epithelial-mesenchymal transition (EMT) and cell behavior, and to explore its potential regulation by the EMT transcription factor zinc finger E-box binding homeobox 1 (ZEB1).

View Article and Find Full Text PDF